
2344 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Multi-User Delay-Constrained Scheduling With
Deep Recurrent Reinforcement Learning

Pihe Hu , Yu Chen, Ling Pan, Zhixuan Fang, Member, IEEE, Fu Xiao , Member, IEEE,
and Longbo Huang , Senior Member, IEEE

Abstract— Multi-user delay-constrained scheduling is a crucial
challenge in various real-world applications, such as wireless
communication, live streaming, and cloud computing. The
scheduler must make real-time decisions to guarantee both
delay and resource constraints simultaneously, without prior
information on system dynamics that can be time-varying and
challenging to estimate. Additionally, many practical scenarios
suffer from partial observability issues due to sensing noise or
hidden correlation. To address these challenges, we propose a
deep reinforcement learning (DRL) algorithm called Recurrent
Softmax Delayed Deep Double Deterministic Policy Gradient
(RSD4) (https://github.com/hupihe/RSD4), which is a data-driven
method based on a Partially Observed Markov Decision Process
(POMDP) formulation. RSD4 guarantees resource and delay
constraints by Lagrangian dual and delay-sensitive queues,
respectively. It also efficiently handles partial observability with
a memory mechanism enabled by the recurrent neural network
(RNN). Moreover, it introduces user-level decomposition and
node-level merging to support large-scale multihop scenarios.
Extensive experiments on simulated and real-world datasets
demonstrate that RSD4 is robust to system dynamics and partially
observable environments and achieves superior performance over
existing methods.

Index Terms— Delay-constrained, scheduling, partial observ-
ability, deep reinforcement learning.

I. INTRODUCTION

DELAY-CONSTRAINED scheduling has become a cru-
cial problem in guaranteeing a satisfying quality of

experience in various domains, including real-time interactive
applications such as online games, virtual reality (VR), and
cloud computing, due to increasingly rigid user requirements.
For instance, express delivery is a typical delay-sensitive
scheduling problem, as even a small increase in delivery

Manuscript received 19 March 2023; revised 25 August
2023 and 7 December 2023; accepted 28 December 2023; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor I.-H. Hou. Date
of publication 9 February 2024; date of current version 18 June 2024. This
work was supported by the Technology and Innovation Major Project of the
Ministry of Science and Technology of China under Grant 2020AAA0108400
and Grant 2020AAA0108403. (Corresponding author: Longbo Huang.)

Pihe Hu, Yu Chen, and Longbo Huang are with the Institute for
Interdisciplinary Information Sciences (IIIS), Tsinghua University, Beijing
100084, China (e-mail: longbohuang@tsinghua.edu.cn).

Ling Pan is with the Department of Electronic and Computer Engineering,
The Hong Kong University of Science and Technology (HKUST), Hong Kong,
China (e-mail: penny.ling.pan@gmail.com).

Zhixuan Fang is with the Institute for Interdisciplinary Information
Sciences (IIIS), Tsinghua University, Beijing 100084, China, and also
with the Shanghai Qi Zhi Institute, Shanghai 200232, China (e-mail:
zfang@mail.tsinghua.edu.cn).

Fu Xiao is with the School of Computers, Nanjing University of Posts and
Telecommunications, Nanjing 210023, China (e-mail: xiaof@njupt.edu.cn).

Digital Object Identifier 10.1109/TNET.2024.3359911

time can significantly impact customers’ perceived ambiguity
and reduce satisfaction, as reported by [1]. Delay-constrained
scheduling is also critical for data communications [2], video
streaming [3], and data center management [4].

Delay-constrained scheduling poses several challenges.
Firstly, the scheduler must satisfy latency and resource
constraints, while the delay metric depends on the overall
dynamics and control of the system across time, and the
resource constraint further couples scheduling decisions.
Secondly, system dynamics, such as user channels in mobile
networks, are hard to trace since distributions of underlying
random components can be highly dynamic and correlated.
Thirdly, practical scheduling systems usually face a large
number of users and have complex network structures,
requiring highly scalable solutions for large-scale and multihop
scenarios. For example, live video platforms such as YouTube
and Instagram have millions of daily active users [5]. Fourthly,
practical systems can also suffer from partial observability
issues due to sensing noise and hidden correlation. For
instance, most IoT devices cannot have perfect knowledge of
a dynamic channel environment due to hardware limitations
and short sensing time [6], and channel states in network
systems can also be challenging to obtain [7]. The universality
of partial observability problems demands highly robust
algorithms.

Many scheduling algorithms have been proposed in the
literature based on different methods, including queueing-
based, optimization-based, dynamic programming-based, and
Lyapunov control-based approaches. However, these methods
have various limitations, such as requiring prior knowl-
edge about system dynamics, suffering from the curse-of-
dimensionality, or focusing on stability constraints rather than
delay. To address these limitations, this paper proposes a
deep reinforcement learning (DRL)-based algorithm, named
Recurrent Softmax Delayed Deep Double Deterministic Policy
Gradient (RSD4), as shown in Figure 1. The proposed
algorithm builds on the recurrent deterministic policy gradient
and softmax deterministic policy gradient and introduces
several novel components to handle the scheduling problem
in partially observed settings. Specifically, RSD4 is an end-to-
end method based on a partially observed Markov decision
process (POMDP) formulation with a Lagrange dual update.
It does not require any prior knowledge of system dynamics
and effectively captures hidden system correlation across time
slots using a recurrent module. Moreover, RSD4 employs a
softmax operator to improve value estimation during training
and enhance robustness in handling complex system dynamics.

1558-2566 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6209-2620
https://orcid.org/0000-0003-1815-2793
https://orcid.org/0000-0002-7341-447X

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2345

Fig. 1. RSD4 framework for delay-constrained scheduling.

Finally, it introduces user-level decomposition and node-level
merging to support large-scale and multihop scenarios.

In summary, the RSD4 algorithm is a novel DRL-based
approach for solving delay-constrained scheduling problems
in partially observable systems. It is an end-to-end method that
does not require any prior knowledge of the system dynamics,
and its base POMDP formulation is general enough to
handle various real-world scheduling scenarios. The proposed
algorithm is highly scalable, making it suitable for large-scale
multihop resource-constrained scenarios, and it introduces
several novel components, including the recurrent module
and the softmax operator, to improve the value estimation
and robustness of the algorithm. The extensive experiments
show that RSD4 outperforms classical non-DRL methods and
existing DRL benchmarks.

The main contributions of this paper are summarized as
follows. (i) We provide a general POMDP framework that is
suitable for investigating multi-user delay-constrained schedul-
ing problems with resource constraint, and provides two
novel functions for scalability, i.e., user-level decomposition
and node-level merging. (ii) We propose a novel DRL-based
algorithm, RSD4, which addresses the partial observability
issue and achieves robust value learning. It introduces novel
components of a unified training approach, a double-branch
neural network architecture, and a delayed policy update.
(iii) We conduct extensive experiments on both simulated
and real-world datasets, demonstrating that RSD4 outperforms
existing scheduling methods in various scenarios, especially
in partially-observable settings.

II. RELATED WORK

Numerous research efforts have addressed the schedul-
ing problem through various methodologies, encompassing
stochastic optimization, combinatorial optimization, and deep
reinforcement learning.

Stochastic Optimization: A prominent avenue of research
tackles the problem from a stochastic optimization perspective.
Among the adopted stochastic optimization techniques, four
methodologies stand out: queueing theory-based methods,
such as [8] and [9], which pertain to multi-queue systems;
convex optimization-based methods, exemplified by [10]
and [11], which pertain to wireless network scheduling;
dynamic programming (DP)-based control, as found in [12]
and [13], aimed at throughput optimal scheduling; and
Lyapunov-based optimization, e.g., [14] and [15], for load and

energy scheduling. However, these approaches often struggle
to explicitly incorporate delay constraints or necessitate
precise knowledge of system dynamics, which can be
challenging to obtain in real-world scenarios.

Combinatorial Optimization: Another avenue of research
delves into the problem from a discrete/combinatorial
optimization perspective. For instance, [16] optimizes energy
consumption in mobile multicast wireless networks by
formulating an equivalent directed Steiner tree problem.
Reference [17] optimizes energy consumption with multiple
mobile sinks using fuzzy logic in wireless sensor networks.
The RCGBSA algorithm is proposed in [18] by incorporating
discovered priorities into the extended relative collision
graph. Reference [19] addresses the charging scheduling
problem in wireless rechargeable sensor networks through
solving a reformulated deadline-TSP problem. However,
these combinatorial optimization methods often grapple with
the curse of dimensionality and struggle to scale to large
scenarios.

Deep Reinforcement Learning: In recent years, deep
reinforcement learning (DRL) has gained substantial attention
in the scheduling domain due to its potential in generalization
and scalability. Applications of DRL span various scheduling
scenarios, including video streaming [20], Multipath TCP
control [2], network reconfigurability [3], and resource-
constrained scheduling, as demonstrated in works such as [21]
and [22]. Moreover, many scheduling problems adopt partially
observable Markov decision process (POMDP) formulations.
For instance, scheduling the use of airborne electronic
countermeasures in air operations [23], and minimizing the
network-wide age of information (AoI) by scheduling end
nodes [24], all leverage POMDPs. However, these DRL-based
or POMDP-based approaches often struggle to ensure average
resource constraints or require a fully observable system state
as input. Additionally, they tend to overlook large-scale or
multihop systems. In contrast, our proposed RSD4 constitutes
a data-driven end-to-end algorithm adept at addressing the
partial observability issue under the POMDP formulation.
Furthermore, it manages delay and resource constraints
through delay-sensitive queues and the Lagrangian dual,
respectively. It also embraces user-level decomposition and
node-level merging techniques, significantly extending its
scalability.

III. PROBLEM FORMULATION

This section outlines our scheduling problem formulation.
Initially, we concentrate on the single-hop setting with
an average resource limit across times in Section III-A.
Subsequently, we present the corresponding Lagrange dual in
Section III-B. Furthermore, we delve into the hard resource
limit in each time slot in Section III-C. Finally, we introduce
the more general multihop scheduling problem in Section III-
D.

A. The Scheduling Problem

We consider a scheduling problem (Figure 2), where time
is divided into discrete slots t ∈ 0, 1, 2, . . ., and the scheduler

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2346 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 2. A delay-constrained single-hop network. Jobs arrive at the server and
need to be delivered before the deadline.

receives job arrivals, such as data packets in a network or
parcels in a delivery station, at the beginning of each time slot.
The number of job arrivals for user i at time slot t is denoted
as Ai(t), and we denote A(t) = [A1(t), . . . , AN (t)]. Each job
for user i has a strict delay constraint τi, which means that
the job must be served within τi slots upon its arrival, or it
will become outdated and be discarded.

The buffer model: Jobs arriving at the system are initially
stored in a buffer, which is modeled by a set of delay-sensitive
queues. Specifically, the buffer comprises N separate delay-
sensitive queues, one for each user, and each queue has an
infinite size. The state of queue i at time slot t is denoted by
Bi(t) = [B0

i (t), B1
i (t), . . . , Bτi

i (t)], where Bτ
i (t) represents

the number of jobs for user i that have a remaining time of τ
timeslots until expiration for 1 ≤ τ ≤ τi.

The scheduling and service model: At every time slot t,
the scheduler makes decisions on the resources allocated to
jobs in the buffer. For each user i, the decision is denoted
as ei(t) = [e0

i (t), e
1
i (t), . . . , e

τi
i (t)], where eτ

i (t) ∈ [0, emax]
represents the amount of resource allocated to serve each
job in queue i with a deadline of τ . Each scheduled job
is then passed through a service channel, whose condition
is random and represented by ci(t) for user i at time slot
t. The full channel conditions at time slot t are denoted as
c(t) = [c1(t), c2(t), . . . , cN (t)]. The probability of successful
service for a user i’s job with allocated resource e and channel
condition c is denoted as Pi(e, c). Here, e = 0 means that
the job will not be served, and Pi(0, c) = 0. Additionally,
Pi(e, ·) > 0 for all e > 0. If a job is scheduled but fails
in service, it remains in the buffer if it is not outdated. The
instantaneous resource consumption at time slot t is denoted
as E(t) =

∑N
i=1 e⊤i (t)Bi(t), and the average resource

consumption is E = limT→∞
1
T

∑T
t=1 E(t).

The system objective: For each user i, the number of
jobs that are successfully served at time slot t is denoted as
di(t). A weight βi is assigned to each user, and the weighted
instantaneous throughput is defined as D(t) =

∑N
i=1 βidi(t).

The objective of the scheduler is to maximize the weighted
average throughput, defined as D = limT→∞

1
T

∑T
t=1 D(t),

subject to the average resource consumption limit, i.e.,1

P : max
ei(t):1≤i≤N,1≤t≤T

lim
T→∞

1
T

T∑
t=1

N∑
i=1

βidi(t)

s.t. lim
T→∞

1
T

T∑
t=1

N∑
i=1

e⊤i (t)Bi(t) ≤ E0 (1)

where E0 is the average resource consumption limit.
We denote the optimal value of problem P by T ∗.

1We assume w.l.o.g. that all corresponding limits exist. The results can be
generalized with lim sup and lim inf definitions otherwise.

Note that while our problem formulation is based on that
in [12], our aim is to devise practical and scalable scheduling
solutions that can be applied in real-world scenarios. In doing
so, we avoid making assumptions about the ergodicity of
system dynamics and instead allow for randomness that may
be correlated with hidden factors. We start by not enforcing
the hard constraints on resource allocation in our approach.
Then, in Section III-C, we demonstrate that our framework
can also incorporate hard constraints if needed.

B. Lagrange Dual

We define a Lagrangian function to handle the average
resource budget constraint in problem P , as follows:

L(π, λ) = lim
T→∞

1
T

T∑
t=1

N∑
i=1

[
βidi(t)− λe⊤i (t)B⊤

i (t)
]

+ λE0

(2)

where π is the control policy and λ is the Lagrange multiplier.
We denote by g(λ) the Lagrange dual function for a given
Lagrange multiplier λ, given by:

g(λ) = max
π
L(π, λ) = L(π∗(λ), λ), (3)

where the maximizer is denoted as π∗(λ). Using Lemma 3
in [12], the optimal timely throughput T ∗ equals the optimal
value of the dual problem, i.e., T ∗ = minλ≥0 g(λ) = g(λ∗),
where λ∗ is the optimal Lagrange multiplier.

To obtain the optimal policy π∗(λ∗) = arg maxπ L(π, λ∗),
it is necessary to first find the optimal Lagrangian multiplier
λ∗. Here, we denote the consumed resource under policy π in
time slot t as Eπ(t). According to Danskin’s Theorem in [25],
the derivative of the dual function g(λ) can be expressed
as g′(λ) = ∂L(π∗(λ),λ)

∂λ = E0 − Eπ∗(λ), where Eπ∗(λ) =
limT→∞

1
T

∑T
t=1 Eπ∗(λ)(t) denotes the average resource

consumption under the optimal policy π∗(λ). Therefore, the
optimal policy π∗(λ∗) can be obtained by recovering the dual
function g(λ) for some λ and using gradient descent to find
the optimal λ∗ > 0 that minimizes g(λ).

In practical systems, finding the optimal policy π∗(λ) for
a given λ is challenging due to several reasons. First, system
dynamics are difficult to trace because distributions can be
highly dynamic and correlated in many scenarios. Second,
the system can only be partially observed due to sensing
limitations, noise, and other hidden factors. Finally, practical
scheduling systems usually involve a large number of users and
a complex multihop topology, which require highly scalable
solutions. Previous works [12], [13] have used dynamic
programming to find the maximizer π∗(λ). However, this
approach requires prior knowledge of system dynamics and
suffers from the curse-of-dimensionality in large systems, and
may not be directly applicable to partially observable systems.
These challenges have motivated us to design a DRL-based
framework with partially observable Markov decision process
formulation in Section IV.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2347

C. Hard Resource Limit

We consider P with a hard resource limit of Eh in each
time slot. To incorporate this limit in our POMDP formulation
mentioned in Section IV-A, we convert the constrained
maximization problem to an unconstrained one. Hard resource
constraints, such as the transmitting antennas in wireless
communication systems, are common in realistic scheduling
problems. Therefore, we introduce the following problem:

P : max
ei(t):1≤i≤N,1≤t≤T

lim
T→∞

1
T

T∑
t=1

N∑
i=1

βidi(t)

s.t. lim
T→∞

1
T

T∑
t=1

N∑
i=1

e⊤i (t)Bi(t) ≤ E0

N∑
i=1

e⊤i (t)Bi(t) ≤ Eh,∀1 ≤ t ≤ T (4)

Here Eh is the hard resource limit of the server. The
Lagrangian function for problem P can be obtained similarly
to Eq. (2), except for further considering the hard resource
limit

∑N
i=1 e⊤i (t)Bi(t) ≤ Eh for any 1 ≤ t ≤ T , i.e.,

g(λ) = max
π:

∑N
i=1 e⊤i (t)Bi(t)≤Eh,∀1≤t≤T

L(π, λ). (5)

As discussed in Section III-B, obtaining the optimal policy
involves maximizing the Lagrangian function, which is
non-trivial due to the presence of the hard resource limit.
To tackle this challenge, we aim to transform the constrained
maximization problem into an unconstrained one, to facilitate
the design of DRL-based solutions. To this end, we design the
following auxiliary Lagrange function:

L̃(π, λ) = lim
T→∞

1
T

T∑
t=1

1

{
N∑

i=1

e⊤i (t)Bi(t) ≤ Eh

}

·
N∑

i=1

[
βidi(t)− λe⊤i (t)B⊤

i (t)
]

+ λE0, (6)

Here we use an indicator function to ensure that the resource
limit is satisfied for all time steps 1 ≤ t ≤ T . The
accompanying auxiliary Lagrange dual function is:

g̃(λ) = max
π
L̃(π, λ) = L̃(π̃∗(λ), λ), (7)

where π̃∗(λ) denotes the maximizer of the auxiliary Lagrange
function under the multiplier λ. By introducing the auxiliary
Lagrange function and dual function, we can reformulate the
constrained optimization problem P into an unconstrained
one, thereby facilitating the computation of the optimal
policy. Lemma 1 below establishes the equivalence of the
reformulation by revealing the relationship between the
Lagrange dual function g(λ) and the auxiliary Lagrange dual
function g̃(λ).

Lemma 1: For any λ > 0, if π̃∗(λ) is the maximizer of g̃(λ),
then the policy obtained by truncation operation (Appendix A)
of π̃∗(λ),2 denoted by π∗(λ), is a maximizer of g(λ).

Proof: Please refer to Appendix A. □

2The truncated policy π∗(λ) means the policy whose output is the truncated
action of the output of π̃∗(λ), under the same system state.

Fig. 3. (a) A multihop network with three paths in different colours, each
supporting one flow. (b) The flows are aligned with starting nodes.

Remark 2: There is no hard resource limit involved in
maximizing the auxiliary Lagrange function L̃. Consequently,
by maximizing the auxiliary Lagrange function L̃ for a given
λ > 0, we can derive the optimal policy π∗(λ) for the original
Lagrange function L, which does include a hard resource limit,
by truncating π̃∗(λ). The rationale behind transforming the
constrained maximization problem into an unconstrained one
is to enable the incorporation of the hard resource limit into
our POMDP formulation, as shown in Section IV-A.

D. Multihop Networks

In a multihop network, each flow traverses multiple hops,
and the scheduler must determine which flows to serve and
how many resources to allocate at each intermediate node.
Our multihop network consists of N flows (or N users),
denoted by F1, F2, . . . , FN , and K nodes 1, 2, . . . ,K involved
in scheduling. The path length of flow i is denoted as Ji,
and the maximum hop length of all flows is denoted as
J = max1≤i≤N Ji. We represent flow i’s topology using a
matrix H(i) = (h(i)

jk) ∈ RJ×K , where h
(i)
jk = 1 if flow i’s

j-th hop is node k, otherwise, h
(i)
jk = 0. The number of job

arrivals for flow i at time slot t is denoted as Ai(t), and each
job for flow i has a strict delay constraint τi. Each node has an
average resource constraint Ei. As an example, we consider
the multihop network with three paths in Figure 3a. Three
flows pass through three paths, namely F1 = 1→ 2→ 3→ 5,
F2 = 2→ 4→ 6, and F3 = 2→ 3.

The multihop scheduling problem can be considered as the
aggregation of multiple single-hop scheduling problems, with
the specific buffer model, scheduling and service model, and
system objective for multihop cases as follows.

The aggregated buffer model: In a multihop network,
the buffers are modelled as a set of delay-sensitive queues
similar to the single-hop case. However, since jobs in a
multihop network need to traverse multiple hops before
reaching their destinations, the buffer model needs to account
for the flow of jobs through the entire network. To better
represent the system state, we propose an aggregated buffer
model that aligns flows with their starting nodes, as shown in
Figure 3b. For flow i with a path length of Ji, we denote
the buffer state of flow i at j-th hop (1 ≤ j ≤ Ji)
as B

(j)
i (t) = [B(j,0)

i (t), B(j,1)
i (t), . . . , B(j,τi−j+1)

i (t)], where
B

(j,τ)
i (t) represents the number of jobs in flow i at j-th hop

with τ remaining time slots until expiration, for 0 ≤ τ ≤
τi − j + 1. We set B

(j)
i (t) = 0 for Ji < j ≤ J to denote

the absence of flow i in those hops. In this manner, there

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2348 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

are J aggregated buffers, i.e., B(1)(t),B(2)(t), . . . ,B(J)(t),
where B(j)(t) = [B(j)

1 (t), B(j)
2 (t), . . . ,B(j)

N (t)] denotes the
j-th aggregated buffer for 1 ≤ j ≤ J .

The multihop scheduling and service model: At every
time slot t, the scheduler must determine which flows to
serve and how many resources to allocate at each node.
The allocated resources for flow i are given by ei(t) =
[e(1)

i (t), e(2)
i (t), . . . ,e(Ji)

i (t)], where e
(j)
i (t) represents the

resources allocated to flow i’s j-th hop for 1 ≤ j ≤ Ji.
Thus, the scheduling decision for all flows (users) at time
slot t is denoted as at = [e1(t), e2(t), . . . , eN (t)]. Each
scheduled job needs to pass through service channels in its
flow path. We denote the service channel condition between
node i and j at time slot t as cij(t). For a job of flow
i with allocated resources e and channel condition c, the
probability of successful service is denoted as Pi(e, c). The
instantaneous resource consumption of node k at time slot t

is denoted as E(k)(t) =
∑N

i=1

∑Ji

j=1 h
(i)
jk e

(j)
i

⊤
(t)B(j)

i (t), and
the average resource consumption of node k is denoted as
E

(k)
= limT →∞ 1

T

∑T
t=1 E(k)(t).

The multihop system objective: The number of success-
fully served jobs at time slot t for flow i is denoted as
di(t). Each flow is also given a weight βi, and the weighted
instantaneous throughput is denoted as D(t) =

∑N
i=1 βidi(t).

The objective of the scheduler is to maximize the weighted
average throughput, defined as D = limT→∞

1
T

∑T
t=1 D(t),

subject to the average resource consumption limit, i.e.,

Pm : max
ei(t):1≤i≤N,1≤t≤T

lim
T→∞

1
T

T∑
t=1

N∑
i=1

βidi(t)

s.t. lim
T→∞

1
T

T∑
t=1

N∑
i=1

Ji∑
j=1

h
(i)
jk e

(j)
i

⊤
(t)·

B
(j)
i (t) ≤ E

(k)
0 ,∀1 ≤ k ≤ K (8)

where E
(k)
0 is the average resource limit of node k.

Lagrange Dual for Multihop cases: The Lagrangian
function for multihop problem Pm is given as

Lm(π, λ)

= lim
T→∞

1
T

T∑
t=1

N∑
i=1

[
βidi(t)

−
K∑

k=1

λk

Ji∑
j=1

h
(i)
jk e

(j)
i

⊤
(t)B(j)

i (t)
]

+
K∑

k=1

λkλE
(k)
0 , (9)

where λ = [λ1, λ2, . . . , λK] contains multiple Lagrange
multipliers. Besides, the Lagrange dual function for fixed
Lagrange multiplier λ can be given as:

gm(λ) = max
π
Lm(π, λ) = Lm(π∗m(λ), λ), (10)

Thus, the optimal policy π∗m(λ∗) can also be obtained by
recovering the dual function gm(λ) for some λ and taking
gradient descent to find the optimal λ∗.

Fig. 4. Observations of a four-user system (time index omitted).

IV. OVERALL FRAMEWORK

This section presents the overall framework of our
solution to the scheduling problem. We begin by introducing
the POMDP formulation in Section IV-A, followed by
our approach to achieving scalability through user-level
decomposition and node-level merging in Sections IV-B
and IV-C.

A. The POMDP Formulation

We present the POMDP formulation for the scheduling
problem, which enables the application of RSD4 to find the
optimal policy π(λ). The POMDP is denoted by M =
⟨S,O,A, r, P, γ⟩, where S represents the state space, O
denotes the observation space, A is the action space, r is the
reward function, P denotes the transition matrix, and γ stands
for the discount factor.

State and Observation: The overall system state st

includes A(t), B1(t), . . . , BN (t), c(t), and other information
related to the underlying MDP that is unobservable by the
scheduler, such as random hyperparameters of successful
transmission probability or the mobile user’s position that
affects traffic arrival and channel. Since partial observable
scenarios are common in scheduling problems, we consider
st to be partially observed. This implies that the actual
observation ot is a subset of st, and the exact form of ot

depends on the environment settings. For example, Figure 4a
shows a partially-observed system of a four-user case, where
the observation ot = [B1(t), . . . ,BN (t), c(t)] only includes
the buffer with delay-sensitive queues and channel states.

Action and Reward: At time slot t, the action is denoted
by at = [e1(t), . . . , eN (t)], and the reward is

rt = D(t)− λE(t), (11)

which is the instantaneous weighted throughput D(t) minus
the resource consumption E(t) weighted by the λ.

Learning Objective: Under POMDP, an optimal
agent needs to access the entire history ht =
(o1, a1, o2, a2, . . . , at−1, ot) and learn a deterministic
policy π(·; ϕ) parameterized by ϕ, which maps from the
history to the action space, with the objective of maximizing
the expected long-term rewards

J(π(·; ϕ)) = E

[
T∑

t=0

γtr (st, at) | s0, a0, π(·; ϕ)

]
.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2349

Remark 3: The reward setting in (11) implies that when
γ = 1, the cumulative discounted reward is R =

∑T
t=1 γtrt =

TL(π, λ)− λTE0. This differs from the Lagrangian function
value in (2) by −λTE0. Therefore, an algorithm maximizing
the expected rewards J(π(·; ϕ)) is also a maximizer for the
Lagrangian function, which is the objective of RSD4 as detailed
in Section V. Furthermore, if we consider the hard resource
limit, it is sufficient to set the reward as

rt = 1

{
N∑

i=1

e⊤i (t)Bi(t)≤Eh

}
·

N∑
i=1

[βidi(t)−λe⊤i (t)B⊤
i (t)]

= 1 {E(t) ≤ Eh} [D(t)− λE(t)] (12)

according to Remark 2 by the auxiliary Lagrangian function.

B. User-Level Decomposition

In a multi-user scheduling system, the inclusion of buffer
information in the system state, whose size scales with
the number of users, poses a considerable challenge to
learning, particularly in large-scale systems. This challenge
stems from the necessity to train neural networks with an
increasing number of hyperparameters due to the larger input
dimension. As a result, the scalability of DRL-based methods
is significantly limited. To address this limitation, we introduce
a user-level decomposition technique that empowers RSD4 to
devise effective policies using compact neural networks, even
when dealing with large-scale scenarios.

User-level decomposition transforms the original maxi-
mization problem of Eq. (2) into a series of decomposed
user-specific sub-problems. This approach involves defining
the user-level decomposed Lagrangian function for user i as:

Li(πi, λi) = lim
T→∞

1
T

[T∑
t=1

βidi(t)− λie
⊤
i (t)B⊤

i (t)
]
, (13)

Here, πi represents the decomposed policy for scheduling user
i’s jobs in the buffer. The interpretation of Li is as follows: the
packet accumulates a payment of λi per unit energy used for
transmission by user i, while simultaneously accruing a reward
of βi upon reaching its destination before the expiration of its
deadline.

We denote the optimal policy for user i’s sub-problem as
π∗i (λi), where λi serves as the multiplier. After maximizing
the decomposed Lagrangian function (13) for each user with
a fixed λi = λ, we can obtain the optimal policy π∗(λ) by
aggregating each user’s individual optimal scheduling policy
π∗i (λi), which is proved in Lemma 4.

Lemma 4: For a fixed λ, let π̂(λ) denote the
aggregated policy of {π∗1(λ), π∗2(λ), . . . , π∗N (λ)}. This
aggregated policy operates on an observation o =
[o(1), o(2), . . . , o(N)] and yields an output π̂(λ)(o) =
[π∗(λ)(o(1)), π∗(λ)(o(2)), . . . , π∗(λ)(o(N))]. The policy π̂(λ)
is then the optimal policy that maximizes the Lagrangian
function in Eq. (2).

Proof: please refer to Appendix B. □
Furthermore, our approach to user-level decomposition

differs from the packet-level decomposition method employed
in previous works such as [12] and [13]. The distinction arises

from the observation that packet-level decomposition generates
numerous packet-specific sub-problems, thereby introducing
additional instability that hinders the neural network’s ability
to learn the optimal policy effectively. Consequently, our
user-level decomposition technique empowers RSD4 to identify
the optimal policy using compact neural networks that main-
tain stability during training, even in large-scale scenarios,
which significantly enhances the scalability of our approach.

Decomposed POMDP: Based on the above intuition,
we decompose the POMDP into user-level subproblems, where
for each user i, the action is a

(i)
t = ei(t), and the reward

becomes r
(i)
t = βidi(t) − λe⊤i (t)Bi(t) at time slot t. The

observation is also decomposed as well, Figure 4b presents
o
(i)
t = [i, Bi(t), ci(t)] for a four-user case, where the first

index for user i’s sub-problem is required for algorithm
training (explained next). This is a key step in RSD4. As we
will see in Section VI-D, without decomposition, RSD4 and
other existing DRL algorithms can fail due to inadequate state
representation under large state scenarios.

Unified Training: After decomposition, the state space
is compressed, resulting in N different sub-POMDPs, each
with different dynamics for different users. Training N
different DRL agents would result in a linear growth of
computation power, which is not feasible for large-scale
systems. To address this issue, we propose the method of
unified training. In this method, we train different samples
from different sub-environments together, using an extra user
index i as the identifier for samples from the user i’s sub-
problem, as shown in Figure 4b. Consequently, the dimension
of training samples remains the same regardless of the system
scale, which achieves better scalability.

Remark 5: With observation decomposition and unified
training, a single system observation ot is decomposed into
N separate sate o1

t , o
2
t , . . . , o

N
t , such that one scheduling

decision in the original environment creates N samples for
the replay buffer. Consequently, it does not require heavy
parallel computation and greatly enriches the abundance
of the replay buffer, such that common knowledge across
different users’ sub-POMDPs is learned efficiently. With
PODMP decomposition, the number of neural network
parameters also remains small even for large-scale systems,
because the dimension of observation remains unchanged after
decomposition, which makes our framework highly scalable.

C. Node-Level Merging

We introduce a technique called node-level merging to
address the complexity of multihop scheduling problems in
POMDP formulation. The main idea of node-level merging
is to augment the state, observation, action, and reward in
the POMDP formulation by grouping flows with same hop
numbers. Figure 5 illustrates an example of node-level merging
with the detailed procedure below.

State and Observation: The system state is obtained by
merging buffer and channel states at different hops. Given
that jobs in a multihop flow differ only in their node position
and remaining time until expiration, we aggregate the buffer
states at each node to encode the system state. Specifically,

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2350 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 5. Node-level Merging of a three-flow case. Flow i’ node j is associated
with a buffer Bi

j . Flows are aligned with starting nodes.

for flow i with a path length of Ji, we have denoted the
buffer state of flow i at j-th hop (1 ≤ j ≤ Ji) as
B

(j)
i (t) = [B(j,0)

i (t), B(j,1)
i (t), . . . , Bi(j,τi−j+1)(t)]. The idea

of node-level merging is to set the overall observation ot to be
[B(1)

1 (t), . . . ,B(1)
N (t), . . . ,B(J)

1 , . . . ,B
(J)
N (t), c(t)], along with

potentially other environmental factors. Figure 5 illustrates
a case where ot = [B(1)

1 (t), . . . ,B(1)
N (t), . . . ,B(J)

1 , . . . ,

B
(J)
N (t), c(t)].
Action: The action is similarly obtained by merging

actions at different nodes, i.e., at = [e(1)
1 (t), . . . ,

e
(1)
N (t), e(J)

1 (t), . . . , e(J)
N (t)], where e

(j)
i (t) represent the

resource allocated to user i’s j-th node for 1 ≤ j ≤ Ji.
Reward: The reward is set to rt = D(t)−

∑M
k=1 λkE(k)(t),

where λk and E(k)(t) correspond to the Lagrangian multiplier
and resource consumption at node k for 1 ≤ k ≤ K.

A common approach for multihop scheduling is to address
the scheduling problem in each node separately. However,
in delay-constrained multihop networks, scheduling each node
separately cannot satisfy the hard delay constraint. Multi-agent
architecture [26], [27] has been adopted for multihop networks
but with more computation resource requirements and can
be harder to train. Node-level merging provides a novel way
of concatenating buffers of different hops in flows together,
making its training similar to that for a single-hop scheduling
problem except with a higher input dimension. This avoids
training multiple agents for multihop networks, and efficiently
reduces the complexity in training. It allows RSD4 to perform
well and outperforms other methods, even when the system
scale is significantly increased in multihop networks.

V. PROPOSED METHOD: RSD4

We present our novel algorithm, called RSD4, which stands
for Recurrent Softmax Delayed Deep Double Deterministic
Policy Gradient, in Algorithm 1. This algorithm builds
upon the recurrent deterministic policy gradient [28] and
softmax deterministic policy gradient [29] and introduces
several novel components for handling the scheduling problem
in partially observed settings. RSD4 is a model-free deep
reinforcement learning algorithm that utilizes the actor-critic
framework [30]. It is designed to handle partial observability
issues using the memory mechanism enabled by recurrent
neural networks (RNNs) and resolves the overestimation
problem in existing recurrent DRL methods using the
softmax operator. As a result, RSD4 has advantages over
both recurrent deterministic policy gradient [28] and softmax
deterministic policy gradient [29]. Additionally, RSD4 adopts

a double-branch architecture from [31] to better utilize the
memory mechanism of the RNN and implements a delayed
policy update frequency to further reduce the variance in value
estimates. Overall, RSD4 is a powerful algorithm that can
handle partial observability issues and provide accurate value
estimates for efficient scheduling in complex systems.

Initially, RSD4 makes use of the state-action function
Q(ht, at; θ) parameterized by θ, which is defined as

Q(ht, at; θ)

= Est,at,...,st+T ,at+T |ht,π(·;ϕ)

[T∑
i=0

γir(st+i, at+i)
]
, (14)

where the expectation is taken with respect to the conditional
probability p(st, at, . . . , st+T , at+T |ht, π(·; ϕ)) of the trajec-
tory distribution associated with history ht and the policy
π(·; ϕ)). RSD4 initializes double critic networks and double
actor networks, where critic networks Q(ht, at; θ) estimate
the value of state-action pairs, and actor networks π(·; ϕ) are
responsible for outputting control actions.

A. The Training Algorithm

Recurrent Network Architecture: Despite the success of
RL in solving a number of challenging tasks, the state-of-the-
art RL algorithms such as TD3 [32] have limitations in solving
fully-observable tasks. As a result, they may fail when faced
with partially observable tasks such as the problem considered
in this work. To address this problem, compared to prior
non-recurrent policy gradient methods, RSD4 incorporates
recurrency in designing the architecture for neural networks
instead of simply using feedforward networks in the policy
update. This strengthens the memory capability of RSD4 and
enables it to learn hidden factors or temporal correlations of
the system dynamics. We then update the policy by RDPG
[28]:

∇ϕJ(π(·; ϕ))

=Eht

[∑
t

∇ϕ(π(ht; ϕ))∇aQ(ht, a; θ)
∣∣∣a=π(ht; ϕ)

]
. (15)

To compute RDPG, a sequence of episodes is stored in the
replay buffer D as training samples (line 14). RSD4 computes
target values (y1, y2, . . . , yT) for each sampled episode using
the recurrent networks in lines 17-23. Critics and actors are
updated recurrently, as shown in lines 24 and 26.

Softmax Double Learning: Having a good estimate of
the value function is critical for RL agents to achieve good
performance [29]. We therefore propose to incorporate the
softmax operator for more accurate value function estimation
in different scenarios. In lines 21–22, we compute the
Q-function by softmax operator by:

softmaxβ(Q(h, ·)) =
Ea∼p

[
exp(βQ(h,a;θ))Q(h,a;θ)

p(a)

]
Ea∼p

[
exp(βQ(h,a;θ))

p(a)

] (16)

where β denotes the inverse temperature and p is the sampling
distribution. The target value for critic Qi is given by yi =
r +γ softmaxβ(Q̂(h, ·)) in line 22, where Q̂(h, ·) denotes the

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2351

Algorithm 1 RSD4 With Decomposition
Require: λ0, resource limit E0, learning rate α, Precision

δ, episode number M , episode length T , batch size b,
target update rate τ , inverse temperature β, and sampling
distribution p.

1: λ1 ← λ0, λ0 ← 0, k ← 1
2: while |λk − λk−1| > δ do
3: Initialize N learning environments with r

(i)
t =

βidi(t)− λe⊤i (t)Bi(t) for i-th environment.
4: Initialize critic networks Q1, Q2, and actor networks

π1, π2 with random parameters θ1, θ2, ϕ1, ϕ2. Initialize
target network θ−1 , θ−2 , ϕ−1 , ϕ−2 ← θ1, θ2, ϕ1, ϕ2.

5: Initialize replay buffer D.
6: for episodes = 1 to M // Episodic interaction do
7: for t = 1 to T do
8: for i = 1 to N do
9: Receive sub observation oi

t

10: hi
t ← hi

t−1, a
i
t−1, o

i
t

11: Select action ai
t based on π1 and π2.

12: end for
13: end for
14: Store (oi

1, a
i
1, r

i
1, . . . , o

i
T , ai

T , ri
T) in D for i = 1 to

N .
15: for i = 1, 2 // Double learning do
16: Randomly sample a batch of b episodes: B =

{(o1, a1, r1, . . . , oT , aT , rT)} from D.
17: for t = 1 to T // Recurrent softmax learning do
18: Sample K noise ϵ ∼ N (0, σ′)
19: ât ← πi(ht; ϕ−i) + clip(ϵ,−c, c)
20: Q̂(ht, ât)← minj=1,2(Qj(ht, ât; θ−j))
21: Compute softmaxβ(Q̂(ht, ·)) by Eq. (16)
22: yt ← r + γ(1 − d) softmaxβ(Q̂(ht, ·)), where

done flag d = 1 if t = T else d = 0.
23: end for
24: Update θi according to Bellman loss:

1
N

∑
h∈B

∑
t (Qi (ht, a; θi)− yi)

2

25: if episodes mod d = 0 // Delayed update then
26: Update actor ϕi by recurrent policy gradient:

∇ϕi
J(ϕi) =

1
N

∑
h∈B

∑
t

[
∇ϕi

(π(ht; ϕi))

∇aQi(ht, a; θi)|a=π(ht;ϕi)

]
27: Update target networks:

θ−i ← τθi + (1− τ)θ−i , ϕ−i ← τϕi + (1− τ)ϕ−i
28: end if
29: end for
30: end for
31: Obtain policy πk and evaluate Eπk

.
32: λk = λk + α(Eπk

− E0) // Gradient update
33: λk−1 ← λk

34: end while
35: Output πk

value estimation function in line 20. RSD4 further adopts a
delayed policy update mechanism from [32] (line 25) to avoid

Fig. 6. The architecture of the critic network. There are double parallel
branches of the LSTM branch and the fully-connected branch, which are
later concatenated together by a fully-connected layer to output Q value.

training divergence due to frequent updates of the policy. Thus,
the policy network is updated at a lower frequency than the
value network to minimize error before introducing a policy
update, with the similar goal of making the scheduling policy
more robust in various systems.

B. Network Architecture

RSD4 uses double actor-networks and double critic-
networks. The architecture of the critic network is shown in
Figure 6, and actor networks are similar, with the difference
being removing the action at in the input and changing the
output value Q(st, at) to action at. The recurrent layers build
upon Long-Short-Term-Memory (LSTM) [33] to perform
RDPG in Eq. (15), and there are two parallel branches,
i.e., the fully connected branch and the LSTM branch. This
architecture is firstly proposed in [31] and is effective for our
scheduling problem, as validated in our experiments.

The LSTM branch is designed to strengthen the memory
ability of RSD4 algorithm, since it allows the agent to
incorporate a large amount of network measurement history
into its state space to capture the long-term temporal
dependencies of actual system dynamics. The LSTM layer is
embedded in the second layer of the multilayer perceptron
feature extractor. Consequently, our RSD4 algorithm can
well handle various partially observable settings. The fully
connected branch is designed to capture more information
and improve expressiveness in the current time slot, which
provides subsequent layers with more direct access to the
current state without requiring information to filter through
the LSTM branch. This makes RSD4 more sensitive to the
current system state, so that abrupt changes of environmental
conditions, e.g., a sudden burst of arrivals or temporal channel
condition degradation, can be detected rapidly (shown in
Section VI-C.3). Overall, the combination of fully connected
and LSTM branches in the architecture of RSD4 provides
a good balance between capturing long-term dependencies
and reacting to current system states, which are critical
for achieving good performance in real-world scheduling
problems.

Remark 6: The architecture depicted in Figure 6 is
designed to address the challenge of partial observability,
which is a common issue in many real-world scenarios.
Traditional non-DRL methods and even some non-recurrent

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2352 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

TABLE I
SUMMARY OF ARRIVALS AND CHANNEL STATES

DRL algorithms are not explicitly equipped to handle such
situations. However, our proposed POMDP formulation and
the RSD4 algorithm leverage the memory mechanism enabled
by the LSTM layer, allowing the agent to learn from a
batch of historical observations and better capture the
long-term temporal dependencies of the underlying dynamics.
This enables the agent to effectively handle potentially
non-stationary and partially observable environments, while
reducing the impact of temporal variability.

VI. EXPERIMENT RESULTS

We extensively tested RSD4 on both real-world and
simulated datasets, averaging results over five runs. We set
up the environment in Section VI-A, comparing RSD4 with
various algorithms in Section VI-B. We also evaluated the
scalability of RSD4 in Section VI-D under scenarios with large
user scales and multihop networks, by utilizing the user-level
decomposition and node-level merging. An ablation study of
the RSD4 design is given in Section VI-E.

A. Environment Setup

This subsection specifies the setup of the single-hop network
illustrated in Figure 2 and the multihop environment is
constructed in a similar way. In our setup, one interaction
step equals one-time slot in our simulated environment.
We recommend setting episode length T = 100 and episode
number M = 300 to balance performance and computation
complexity, with detailed ablation study in Appendix C.

Arrivals: The arrivals are given by an LTE dataset [34],
which records the traffic flow of mobile carriers’ 4G
LTE network for approximately one year. We construct an
environment with four types of arrivals given by the LTE
dataset, which are visualized in Figure 7a. The characteristics
of the selected data records are provided in Table I, which
simulates four representative tasks, i.e., file transmission,
online forum, VR gaming, and text communication, according
to their rates and delay requirements.

Service Channel Conditions: The channel states used
in the experiments are obtained from a wireless 2.4GHz
dataset [35]. This dataset records the received signal strength
indicator (RSSI) in the check-in hall of Shenzhen Baoan
International Airport. Each RSSI value is quantized into four
levels, resulting in four possible channel states. These states
are visualized in Figure 7b, and their average values are
provided in Table I. The assumption made in the experiments
is that the service channel conditions are unknown, thereby
simulating a partially observable scheduler.

Service Outcomes: We adopt the same assumption for
the probability of successful service as presented in [13].

Specifically, the successful service probability for user i under
channel state c and allocated resource e is modeled as follows:

Pi(e, c) =
2

1 + exp[−2e/(l3i c)]
− 1, (17)

where li represents the distance between user i and the
server. This modeling of service probability corresponds to
a wireless downlink system, where e can be interpreted as the
transmission power of the antenna for transmitting the current
packet. Furthermore, the resource constraint E0 signifies that
the average power consumption of the antenna stays within the
limit of E0. While we present the form of service probability
in Eq. (17), it is worth noting that alternative assumptions for
successful service probability can also be considered. Unlike
classical optimization-based methods [10], [11], RSD4 does
not require linearity or convexity of service probability, since
RSD4 is a data-driven approach that employs neural networks
to automatically learn the underlying system dynamics.

B. Performance Comparison

We compare the performance of our RSD4 algorithm
with existing DRL and classical non-DRL methods in this
subsection. The benchmark DRL algorithms used in our
experiments are Twin Delayed DDPG (TD3) [32] and Softmax
DDPG (SD3) [29], both of which are state-of-the-art DRL
algorithms. We apply them with Lagrangian dual to ensure
average resource constraints, similar to our RSD4 algorithm
in Section III-B. The non-DRL algorithms used in our
experiments include Programming, Uniform, and Earliest
Deadline First (EDF) [36], which are described below:

(i) Programming: We solve the following static constrained
programming problem Ps for each time slot t with the
resource constraint E0 using convex programming [37]:

Ps : max
e

N∑
i=1

βi

τi∑
τ=1

Bi
τ (t)Pi(eτ

i (t), ci(t))

s.t.
N∑

i=1

e⊤i (t)Bi(t) ≤ E0 (18)

Since the programming method handles the average resource
limit E0 by setting it as a hard resource limit, the optimal
value T ∗static for Ps serves as the static optimal throughput for
the Problem P in Eq. (1). It is important to note that the pro-
gramming method is infeasible in our experiment environment
since the service channel conditions and the successful service
probability are unknown beforehand. However, we include this
method to highlight the near-optimality of RSD4.

(ii) Uniform: Assign available resources to different packets
in the buffer uniformly.

(iii) Earliest Deadline First (EDF) [36]: Assign all resources
to packets with the shortest deadline in each queue equally.

To evaluate the case when the resource expenditure at each
time may be strictly bounded, we consider the hard resource
constraint Eh for each time slot, i.e., scheduling decisions in
each time slot cannot exceed Eh. We introduce the reward in
Eq.(12) to ensure this, which is motivated by our auxiliary
Lagrange function proposed in SectionIII-C, and we set the
hard resource constraint Eh = 2E0.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2353

Fig. 7. Heat maps of arrivals and channel conditions.

Fig. 8. Comparison of different algorithms.

Figure 8 presents a comparison of the performance of
the RSD4 algorithm with other scheduling algorithms for a
system with four users. The simulations are based on real
datasets summarized in Table I, and assume that channels are
unobservable to the scheduler. The scenario simulates a multi-
user resource-constrained wireless base station that provides
delay-constrained scheduling services. Note that since the
number of users is small, we do not need to utilize the
user-level decomposition mentioned in Section for our RSD4
algorithm. The results in Figure 8 show that the throughput
of RSD4-Eh remains relatively close to that of RSD4 for
0 ≤ E0 ≤ 5, but is less than that of RSD4 for E0 > 5.
This is because when the average resource limit E0 is small,
the consumed resource in each time slot is almost under the
hard resource limit Eh = 2E0. However, when more resources
become available, the hard resource limit Eh = 2E0 takes
effect, resulting in throughput degradation compared to the
case without the hard limit Eh. Furthermore, from Figure 8,
it can be observed that RSD4 outperforms all benchmarks in
each resource limit. In the small-medium resource regime with
0 ≤ E0 ≤ 7, the static optimality obtained by Programming
ranks only lower than RSD4. However, in the large resource
regime with 8 ≤ E0 ≤ 10, RSD4 and TD3 outperform classical
methods significantly. Moreover, Figure 8 shows that all DRL
algorithms satisfy the average resource limit, while earliest
deadline first (EDF) fails to fully utilize available resources
since packets with the shortest deadline are too few to consume
all available resources. The results in Figure 8 demonstrate the
superiority of RSD4 over others.

C. Partially Observable Systems

We compared the performance of RSD4 with other
DRL algorithms to further validate the effectiveness of its
recurrent module. Specifically, we focused on maximizing the

Lagrangian function in Eq. (2) using the same environment
as in Section VI-B, which is essentially equivalent to the task
of throughput maximization. In fact, each average resource
limit E0 corresponds to an optimal λ∗, as explained in
Section III-B. Thus, maximizing the Lagrangian function for
a given λ is equivalent to throughput maximization under
the average resource limit of Eπ∗(λ) determined by λ. The
standard RSD4 algorithm, presented in Algorithm 1, iteratively
employs gradient descent to find the optimal multiplier λ∗ for
a fixed average resource limit E0. However, by maximizing
the Lagrangian function in Eq. (2) under different values of
λ, we can explore a broader solution space and study the
system behavior under different constraints parameterized by
λ. This study provides a comprehensive understanding about
the problem and allows better design and optimization of
system performance.

1) Missing Buffer State: We first consider an extreme
environment where the buffer state is unobservable by the
agent, and only arrivals and service channel information are
given. Specifically, the agent’s observation ot = [A(t), c(t)],
which implies the agent needs to memorize arrivals and
service outcomes across multiple time slots to have accurate
estimations of current system states. From Figure 9a, we find
that when the buffer state is observable, i.e., the underlying
MDP is fully observable, RSD4 and SD3 obtain similar
maximum rewards under different λ. However, when the buffer
state is missing, RSD4 still achieves almost the same maximum
rewards, whereas non-recurrent DRL algorithms SD3 and TD3
suffer from significant performance loss. This result confirms
the effectiveness of the recurrent module in capturing temporal
dependencies and learning accurate state representations.

2) Unobservable Hidden Factors: Another common type of
partial observability comes from unobserved hidden factors in
the underlying MDP, e.g., vehicle obstruction will influence
in-tunnel wireless propagation channel which is hard to
trace [38]. To investigate this type of partial observability,
we design an environment where service outcomes are
related to the time index, i.e., services are available only
when the current time slot t is a multiple of some
period, such as wireless communication interfered by periodic
jamming signals. In this case, the underlying MDP is
partially observable, since the hidden factor, i.e., the period,
is unknown to the agent, and the observation is ot =
[B1(t), . . . ,BN (t), c(t)]. From Figure 9b, we observe that
RSD4 outperforms TD3 and SD3 in both tested cases with
periods 5 and 10, and the performance gain of RSD4 is more
significant in the large λ case, which corresponds to the small
resource regime.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2354 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 9. Various partially observable settings.

Fig. 10. Experiments on switching environments.

3) Time-Varying Environments: We next investigate partial
observability arising from time variability of underlying
system dynamics. We introduce two types of time variability
by changing environment dynamics during the experiments.
Specifically, in one setting, we double the rate of arrivals,
and in the other, we change the channel statistics. These two
settings simulate sudden changes that can occur in real-world
environments. In particular, we compare the performance of
different algorithms in maximizing the Lagrangian function
under the same fixed λ, to highlight the rapid adaptability
of our RSD4 algorithm. In both cases, the channel states
are unobservable, and the switch occurs at slot 100, 000.
The results are shown in Figure 10, where we compare
the evaluated rewards of training processes under the
environments with switching in the middle and switching at
the very beginning, for the task of maximizing the Lagrangian
function under λ = 0.5. We observe that, after switching, RSD4
quickly reaches the same rewards as those obtained by training
in these environments from the very beginning, while TD3 and
SD3 both suffer from reward loss after switching, even if they
are trained from the beginning for this new environment. This
validates the robustness of RSD4 in time-varying environments.

Remark 7: Experiments on these three partially observable
environments show the superiority of RSD4 in addressing
partial observability issues. They also demonstrate the benefits
of adopting a POMDP formulation in practical scheduling
problems, as partial observability can arise from various
sources. This comparison also sheds light on understanding
the sub-optimality of non-recurrent DRL algorithms or classi-
cal non-DRL methods in partially observable environments.

D. Scalability by Decomposition and Merging

This investigates the scalability of our proposed algorithm
by conducting experiments in systems with a large number
of users and multihop structures, where the channel states
are assumed to be unobservable. Our experimental results

Fig. 11. Experiments on scalability.

demonstrate that the user-level decomposition and node-level
merging techniques in RSD4 make it a highly scalable solution.

1) Large-Scale System: To assess the scalability of our
proposed method, we evaluate the performance of RSD4 in
comparison with other algorithms on large scale scenarios,
i.e. various numbers of users ranging from 4 to 400,
as depicted in Figure 11. The channel states are assumed to be
unobservable, and we show that the user-level decomposition
technique in RSD4 makes it a highly scalable solution.
We generated arrivals and channels based on predefined
random processes, and all baselines were implemented
with the same set of hyperparameters to ensure fairness.
To compare the performance of the different algorithms in
maximizing the Lagrangian function, we fix the multiplier
and compare the rewards of RSD4 with other benchmarks.
Consequently, the programming method is not applicable
in this case. We generate arrivals and channels based on
predefined random processes and obtain the optimal reward
using dynamic programming (DP) as presented in [13].
Nevertheless, it is essential to note that computing the optimal
throughput by DP is computationally expensive and requires
accessing the entire system dynamics, which is impractical
in real-world applications. We include this comparison to
demonstrate the near-optimality and effectiveness of RSD4.

From Figure 11a, we observe that when the number
of users is less than or equal to 10, the performance of
various baselines is similar. However, as the number of users
increases, all DRL algorithms, including RSD4 without user-
level decomposition, as well as Uniform and EDF, fail to
achieve optimal performance. In contrast, the decomposed
RSD4 consistently outperforms other baselines and achieves
near-optimal performance regardless of the number of users.
Figure 11b shows the learning curve under 50 users, where
only RSD4 achieves near-optimal reward, while RSD4 without
state decomposition and other DRL algorithms fail. These
results demonstrate the necessity of state decomposition,
without which the algorithm’s parameter amount grows too
much and prohibits efficient training.

We also conducted experiments on a scheduler with
200 users under average resource limits ranging from 1000 to
1600 to exactly compare the throughput obtained by different
algorithms in Figure 12. The result shows that RSD4
outperforms most other methods in the resource range.

Remark 8: When the system scale surpasses the hypothesis
dimension of the underlying neural network, such as when
the number of users exceeds 20 as shown in Figure 11a, the

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2355

Fig. 12. Performances of different methods with 200 users.

Fig. 13. Two different multi-hop network topology.

Fig. 14. Experiments on multihop networks.

performance of DRL algorithms declines rapidly, necessitating
neural networks with more hyperparameters. However,
as neural networks become more complex, they become more
difficult to train and require significantly more computational
power. In contrast, with state decomposition, RSD4 can
efficiently control the state dimension while retaining near-
optimal performance, showing the effectiveness of user-level
decomposition.

2) Multihop Network: Moving on to the multihop network
setting, we recall that in Section IV-C we proposed
node-level merging as a scheduling method for multihop
networks. We now present experiments on two different
multihop network topologies depicted in Figures 13a and 13b,
respectively. In both networks, Path1, Path2, and Path3 has
3, 4, and 5 flows passing through respectively.

In Figure 13a, there are three paths,
Path1 = 1 → 2 → 3 → 5, Path2 = 2 → 4 → 6,
and Path3 = 2 → 3. Nodes 1, 2, 3 and 4 have average
resource limits 10, 30, 0.3, 3, respectively. In Figure 13b,
there are three paths, Path1 = 1 → 2 → 3 → 5,
Path2 = 1→ 2→ 4→ 6, and Path3 = 1→ 2→ 3. Nodes
1, 2, 3 and 4 have average resource limits 10, 30, 0.3, 3,
respectively.

The arrival and channel states are drawn from these datasets,
and the throughput obtained by different algorithms is shown
in Figure 14. We observe that RSD4 achieves the maximum

Fig. 15. Rewards on different user scales of multihop networks.

throughput and significantly outperforms other benchmarks,
including TD3, SD3, Programming, Uniform, and EDF, which
highlights the effectiveness of RSD4 in practical scenarios.

To further validate the scalability of our RSD4 algorithm,
we conducted experiments on the multihop network depicted
in Figure 13a with a large number of flows. To enable RSD4
to work efficiently in the large-scale setting of multihop
networks, we still utilized user-level decomposition with
unified training similar to the single-hop case. Specifically,
there are 3x, 4x, and 5x flows passing through Path1,
Path2, and Path3, respectively. We tested the algorithm
with an increasing number of flows from 12 to 180 (i.e., x
ranging from 1 to 15) in Figure 15.3 The achieved maximum
rewards by different algorithms are shown in Figure 15.
From the figure, we observe that when the number of flows
is less than or equal to 60, the performance of various
DRL algorithms is similar, while non-DRL methods perform
poorly. However, as the number of flows increases, all DRL
algorithms, including RSD4 without decomposition, fail to
achieve optimal performance. In contrast, the RSD4 achieves a
larger performance gain over other algorithms as the number
of flows increases while still saving computational resources
by utilizing unified training.

E. Ablation Study

Here we present an ablation study on network architectures,
as well as important hyperparameters such as policy update
frequency and learning rate. The results of this study will
guide us in determining appropriate algorithm parameters.
To ensure that the underlying Markov decision process (MDP)
is well-defined with time-invariant distributions, we use
20 pairs of simulated arrivals and channels in the environment
by pre-specifying their distributions.

We compare different network architectures in Figure 16
with our proposed architecture shown in Figure 6.4 These
architectures are evaluated using RSD4 on the task of
maximizing the Lagrangian function in Eq. (2) with λ =
0, 0.1, . . . , 1. We chose this range of λ as it corresponds to
the possible optimal multiplier λ∗ in our environment setting.
To ensure comparability across architectures, we normalize the
rewards obtained under different λ values.

3We compare the performance of the different algorithms in maximizing
the Lagrangian function here by fixing the multiplier and compare the rewards
of RSD4 with other benchmarks.

4we only present the first several layers of the critic network, while the last
two layers are the same as those shown in Figure 6.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2356 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

Fig. 16. Different network architectures (part).

Fig. 17. Experiments of the ablation study.

1) Network Architectures: The results are presented in
Figure 17a, showcasing the rewards attained using RSD4
with and without the utilization of user-level decomposition.
Our analysis demonstrates that the double-branch architecture
achieved maximum rewards in both scenarios. Furthermore,
we discovered that incorporating the previous action at−1

as an input to the LSTM led to further enhanced rewards,
as illustrated in Figure 16. This emphasizes the advantage
of our proposed double-branch architecture and suggests that
integrating the previous action can better capture underlying
correlations over time. Moreover, for both the original
system state and the decomposed system state, we employed
two neural networks with identical hidden dimensions.
Remarkably, when equipped with user-level decomposition,
the algorithm secures more rewards even with only 20 users,
underscoring the potential stability facilitated by user-level
decomposition. This observation aligns with the trend shown
in Figure 11a, where RSD4 without user-level decomposition
trailed behind RSD4 when the number of users exceeds 20.

2) Policy Delay: To prevent training divergence caused by
overestimating a poor policy [32], RSD4 adopts a delayed
policy update mechanism, as shown on line 25 in Algorithm 1.
In this mechanism, the policy network is updated at a lower
frequency than the value network, allowing for a reduction in
error before introducing a policy update. We evaluate different
policy frequencies on the same simulated environment as
described in Section VI-E.1, and the results are presented
in Figure 17b. Our experiment shows that a moderate policy
frequency of 2 improves the peak reward in both the original
and decomposed cases. Similar to Figure 17a, when equipped
with user-level decomposition, the algorithm achieves higher
rewards with 20 users.

Fig. 18. Iterations under different learning rates.

3) Learning Rate: The choice of learning rate α in
Algorithm 1 is critical. We conduct experiments using different
values of α, as shown in Figure 18, which displays the iteration
of λk and resource consumption, respectively. Our analysis
indicates that a learning rate of 0.1 is too large, leading to
large fluctuations in λk. On the other hand, a small learning
rate of 0.01 eliminates these fluctuations but converges too
slowly. To address this issue, we adopt a decaying learning
rate strategy that halves the learning rate when λ flips in three
consecutive time slots, i.e., αk+1 = αk if λk+1 ≥ λk ≥ λk−1

or λk+1 ≤ λk ≤ λk−1; otherwise, αk+1 = αk/2.

VII. CONCLUSION

This paper presents a novel approach to the problem
of multi-user latency-constrained scheduling with average
resource constraints. To overcome the challenges of partial
observability and scalability, we propose a data-driven
method based on a POMDP formulation, called RSD4,
which ensures resource and delay constraints by leveraging
Lagrangian dual and delay-sensitive queues, respectively. RSD4
addresses the partially observable issue through the use of
a recurrent network module. It also enables robust value
estimation with the softmax operator and introduces user-level
decomposition and node-level merging techniques to ensure
scalability. Our experimental evaluations, conducted on both
simulated environments and real-world datasets, demonstrate
that RSD4 significantly outperforms existing DRL/non-DRL-
based benchmarks. Furthermore, our results show that RSD4
is highly-scalable and robust to various system dynamics and
partially observable settings.

APPENDIX A
PROOF OF LEMMA 1

Before presenting Lemma 1, we first define a truncation
operation in Definition 9.

Definition 9 (Truncation Operation): Let at =
[e1(t), e2(t), . . . , eN (t)] be an output of a policy π,
and Eh > 0 be a hard limit. The truncated action at with
respect to Eh is defined as:

at =

 at, if
N∑

i=1

e⊤i (t)Bi(t) ≤ Eh

0, Otherwise.
Now we are ready to present Lemma 1. Proof: First,

we prove g(λ) ≤ g̃(λ) for any λ > 0. For any policy π whose

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2357

outputs satisfy the hard resource limit
∑N

i=1 e⊤i (t)Bi(t) ≤
Eh, we have

N∑
i=1

[
βidi(t)− λe⊤i (t)B⊤

i (t)
]

= 1

{
N∑

i=1

e⊤i (t)Bi(t) ≤ Eh

}
N∑

i=1

[βidi(t)− λe⊤i (t)B⊤
i (t)]

(19)

for any 1 ≤ t ≤ T . Thus, we have

g(λ) = max
π:

∑N
i=1 e⊤i (t)Bi(t)≤Eh,∀1≤t≤T

L(π, λ)

= max
π:

∑N
i=1 e⊤i (t)Bi(t)≤Eh,∀1≤t≤T

L̃(π, λ)

≤ max
π
L̃(π, λ) = g̃(λ), (20)

where the first equality holds by Eq. (5), the second equality
holds by Eq. (19), the first inequality holds by definition, and
the last equality holds by Eq. (7).

Secondly, we prove g̃(λ) ≤ g(λ) for any λ > 0. Denote the
actions of π∗(λ) and π̃∗(λ) at time t as {ei(t)}i≤1≤N and
{ẽi(t)}i≤1≤N , respectively. We have

1

{
N∑

i=1

ẽ⊤i (t)Bi(t) ≤ Eh

}
N∑

i=1

[
βidi(t)− λẽ⊤i (t)B⊤

i (t)
]

= 1

{
N∑

i=1

e⊤i (t)Bi(t) ≤ Eh

}
N∑

i=1

[
βidi(t)− λe⊤i (t)B⊤

i (t)
]

=
N∑

i=1

[
βidi(t)− λe⊤i (t)B⊤

i (t)
]

(21)

for any 1 ≤ t ≤ T , where the first equality holds
by considering the following two cases: Case i): If∑N

i=1 ẽ⊤i (t)Bi(t) > Eh, then 1{
∑N

i=1 ẽ⊤i (t)Bi(t) ≤ Eh} =
0. In this case ei(t) = 0 for any 1 ≤ i ≤ N and all di(t) = 0.
Thus, both hands of the first equality in Eq. (21) are zero.
Case ii): Otherwise, ẽi(t) = ei(t) for any 1 ≤ i ≤ N and the
equality holds. Besides, the second equality in Eq. (21) holds
since π∗(λ) is obtained by the truncation operation such that
{ei(t)}i≤1≤N always satisfies the hard resource limit. Thus,

g̃(λ) = L̃(π̃∗(λ), λ) = L(π∗(λ), λ)
≤ max

π:
∑N

i=1 e⊤i (t)Bi(t)≤Eh,∀1≤t≤T
L(π, λ) = g(λ), (22)

where the first equality holds by Eq. (7), the second equality
holds by Eq. (21), the inequality holds by definitions, and the
last equality holds by Eq. (5). Combining Eq. (20) and Eq. (22)
gives g(λ) = g̃(λ) for any λ > 0, and the truncated policy
π∗(λ) is the maximizer for g(λ). □

APPENDIX B
PROOF OF LEMMA 4

Proof: For any user i and any λi, we have

Li(π∗i (λi), λi) ≥ max
πi

Li(πi, λi), (23)

Fig. 19. Ablation of episode length T on switching environments.

by the definition of π∗i (λi). Summing Eq. (23) over i from
1 to N for a fixed λ yields

N∑
i=1

Li(π∗i (λi), λi) ≥
N∑

i=1

max
πi

Li(πi, λi)

=
N∑

i=1

max
πi

lim
T→∞

1
T

[T∑
t=1

βidi(t)− λie
⊤
i (t)B⊤

i (t)
]

≥ max
π

N∑
i=1

lim
T→∞

1
T

[T∑
t=1

βidi(t)− λie
⊤
i (t)B⊤

i (t)
]

= max
π

lim
T→∞

1
T

T∑
t=1

N∑
i=1

[
βidi(t)− λe⊤i (t)B⊤

i (t)
]

= max
π

[L(π, λ)− λE0] , (24)

where the first equality holds by Eq. (13), the second inequality
holds by definitions of π and πi, the second equality holds
by interchanging summation and limitation, and last equality
holds by Eq. (2). Let λi = λ for any i. We have

L(π̂(λ), λ)− λE0 =
N∑

i=1

Li(π∗i (λi), λi)

≥ max
π

[L(π, λ)− λE0] , (25)

where the inequality holds by Eq. (2), Eq. (13), and the
definition of the aggregated policy π̂(λ), and the inequality
holds by Eq. (24). Since λ and E0 are both constants, we have
L(π̂(λ), λ) = maxπ L(π, λ), implying that π̂(λ) is the optimal
policy that maximizes L(π, λ). □

APPENDIX C
ABLATION STUDY ON EPISODE LENGTH

We provide an ablation study on the episode length T
of two time-varying environments in Section VI-C.3 and
the results are given in Figure 19. As the agent operates
episodically, episode length T represents the time slot range
sequentially input to the network via the LSTM module.
From Figure 19, we observe that when T ≤ 100, RSD4’s
performance improves with an increasing T . However, beyond
T = 100, the performance reaches a plateau, indicating that
T = 100 provides a sufficient range for the agent to extract
cross-time slot information. Since a larger T induces larger
computation complexity in the LSTM module [33] for each
decision-making step, we recommend utilizing an episode
length of T = 100 to balance performance and computational
complexity effectively.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

2358 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 3, JUNE 2024

In addition, as illustrated in Figure 19, approximately
30, 000 total time steps are adequate for RSD4’s convergence
in different episode lengths. Thus, we take T = 100 and
M = 300 in our experiments in Section VI (so that the total
training step is M · T = 30, 000). This recommendation of
T = 100 and M = 300 aims to strike a balance between
convergence and computational efficiency.

REFERENCES

[1] S. Ma, “Fast or free shipping options in online and omni-channel
retail? The mediating role of uncertainty on satisfaction and purchase
intentions,” Int. J. Logistics Manag., vol. 28, no. 4, pp. 1099–1122,
Nov. 2017.

[2] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A neural adaptive
multipath scheduler based on deep reinforcement learning,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2019, pp. 1648–1656.

[3] R. Bhattacharyya et al., “QFlow: A reinforcement learning approach to
high QoE video streaming over wireless networks,” in Proc. 20th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019, pp. 251–260.

[4] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in NFV-
enabled enterprise datacenter networks,” IEEE Trans. Netw. Service
Manag., vol. 14, no. 3, pp. 554–568, Sep. 2017.

[5] N.-N. Dao, A.-T. Tran, N. H. Tu, T. T. Thanh, V. N. Q. Bao, and S. Cho,
“A contemporary survey on live video streaming from a computation-
driven perspective,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1–38,
Jan. 2022.

[6] R. Xie, Q. Tang, C. Liang, F. R. Yu, and T. Huang, “Dynamic
computation offloading in IoT fog systems with imperfect channel-state
information: A POMDP approach,” IEEE Internet Things J., vol. 8,
no. 1, pp. 345–356, Jan. 2021.

[7] C.-P. Li and M. J. Neely, “Network utility maximization over partially
observable Markovian channels,” Perform. Eval., vol. 70, nos. 7–8,
pp. 528–548, Jul. 2013.

[8] L. Huang, S. Zhang, M. Chen, and X. Liu, “When backpressure
meets predictive scheduling,” IEEE/ACM Trans. Netw., vol. 24, no. 4,
pp. 2237–2250, Aug. 2016.

[9] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf, “Simple near-
optimal scheduling for the M/G/1,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 48, no. 1, pp. 37–38, Jul. 2020.

[10] I.-H. Hou and P. Kumar, “Utility-optimal scheduling in time-varying
wireless networks with delay constraints,” in Proc. 11th ACM Int. Symp.
Mobile Ad Hoc Netw. Comput., 2010, pp. 31–40.

[11] C. Li, P. Hu, Y. Yao, B. Xia, and Z. Chen, “Optimal multi-user
scheduling for the unbalanced full-duplex buffer-aided relay systems,”
IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3208–3221,
Jun. 2019.

[12] R. Singh and P. R. Kumar, “Throughput optimal decentralized
scheduling of multihop networks with end-to-end deadline constraints:
Unreliable links,” IEEE Trans. Autom. Control, vol. 64, no. 1,
pp. 127–142, Jan. 2019.

[13] K. Chen and L. Huang, “Timely-throughput optimal scheduling with
prediction,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2457–2470,
Dec. 2018.

[14] S. Pan and Y. Chen, “Energy-optimal scheduling of mobile cloud
computing based on a modified Lyapunov optimization method,” IEEE
Trans. Green Commun. Netw., vol. 3, no. 1, pp. 227–235, Mar. 2019.

[15] L. Lv et al., “Contract and Lyapunov optimization-based load scheduling
and energy management for UAV charging stations,” IEEE Trans. Green
Commun. Netw., vol. 5, no. 3, pp. 1381–1394, Sep. 2021.

[16] X. Fu et al., “Conmap: A novel framework for optimizing multicast
energy in delay-constrained mobile wireless networks,” in Proc. 18th
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2017, pp. 1–10.

[17] K. Koosheshi and S. Ebadi, “Optimization energy consumption with
multiple mobile sinks using fuzzy logic in wireless sensor networks,”
Wireless Netw., vol. 25, pp. 1215–1234, Apr. 2019.

[18] V.-T. Pham, T. N. Nguyen, B.-H. Liu, M. T. Thai, B. Dumba, and T. Lin,
“Minimizing latency for data aggregation in wireless sensor networks:
An algorithm approach,” ACM Trans. Sensor Netw., vol. 18, no. 3,
pp. 1–21, Aug. 2022.

[19] H. Xue, H. Chen, Q. Dai, K. Lin, J. Li, and Z. Li, “CSCT:
Charging scheduling for maximizing coverage of targets in WRSNs,”
IEEE Trans. Computat. Social Syst., early access, May 6, 2022, doi:
10.1109/TCSS.2022.3169780.

[20] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video
streaming with pensieve,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 197–210.

[21] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[22] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-
user cellular networks: Deep reinforcement learning approaches,” IEEE
Trans. Wireless Commun., vol. 19, no. 10, pp. 6255–6267, Oct. 2020.

[23] H. Song, M. Xiao, J. Xiao, Y. Liang, and Z. Yang, “A POMDP approach
for scheduling the usage of airborne electronic countermeasures in air
operations,” Aerosp. Sci. Technol., vol. 48, pp. 86–93, Jan. 2016.

[24] A. Gong, T. Zhang, H. Chen, and Y. Zhang, “Age-of-information-based
scheduling in multiuser uplinks with stochastic arrivals: A POMDP
approach,” 2020, arXiv:2005.05443.

[25] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex Analysis and
Optimization, vol. 1. Nashua, NH, USA: Athena Scientific, 2003.

[26] C. Xu, S. Liu, C. Zhang, Y. Huang, and L. Yang, “Joint user
scheduling and beam selection in mmWave networks based on multi-
agent reinforcement learning,” in Proc. IEEE 11th Sensor Array
Multichannel Signal Process. Workshop (SAM), Jun. 2020, pp. 1–5.

[27] F. Zhou, L. Feng, M. Kadoch, P. Yu, W. Li, and Z. Wang, “Multiagent
RL aided task offloading and resource management in Wi-Fi 6 and 5G
coexisting industrial wireless environment,” IEEE Trans. Ind. Informat.,
vol. 18, no. 5, pp. 2923–2933, May 2022.

[28] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based
control with recurrent neural networks,” 2015, arXiv:1512.04455.

[29] L. Pan, Q. Cai, and L. Huang, “Softmax deep double deterministic
policy gradients,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 11767–11777.

[30] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[31] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
Real transfer of robotic control with dynamics randomization,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 3803–3810.

[32] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in Proc. ICML, 2018,
pp. 1587–1596.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[34] N. Loi. (2018). Predict Traffic of Lte Network | Kaggle. Accessed:
Jul. 2021. [Online]. Available: https://www.kaggle.com/naebolo/predict-
traffic-of-lte-network

[35] W. Taotao, X. Jiantao, X. Wensen, C. Yucheng, and Z. Shengli.
(2021). Wireless Signal Strength on 2.4 GHZ (WSS24) Dataset.
Accessed: Feb. 17, 2022. [Online]. Available: https://github.
com/postman511/Wireless-Signal-Strength-on-2.4GHz-WSS24-dataset

[36] K. M. F. Elsayed and A. K. F. Khattab, “Channel-aware earliest deadline
due fair scheduling for wireless multimedia networks,” Wireless Pers.
Commun., vol. 38, no. 2, pp. 233–252, Jul. 2006.

[37] K. Shen and W. Yu, “Fractional programming for communication
systems—Part I: Power control and beamforming,” IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2616–2630, May 2018.

[38] J. Song, W. Wang, and R. Ibrahim, “The impact of obstruction by vehicle
on in-tunnel wireless propagation channel,” in Proc. IEEE 4th Int. Conf.
Electron. Inf. Commun. Technol. (ICEICT), Aug. 2021, pp. 572–576.

Pihe Hu received the B.E. degree from the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University (SJTU), Shanghai,
China, in 2019. He is currently pursuing the
Ph.D. degree with the Institute for Interdisciplinary
Information Sciences (IIIS), Beijing, China, under
the supervision of Prof. Longbo Huang. His research
interests include reinforcement learning, sparse
neural networks, and stochastic optimization.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCSS.2022.3169780

HU et al.: MULTI-USER DELAY-CONSTRAINED SCHEDULING WITH DEEP RECURRENT REINFORCEMENT LEARNING 2359

Yu Chen received the B.S. degree from the
Department of Mathematical Science, Tsinghua
University, Beijing, China, in 2023. He is currently
pursuing the Ph.D. degree with the Institute
for Interdisciplinary Information Sciences (IIIS),
Beijing, under the supervision of Prof. Longbo
Huang. His research interests include the theory and
application of reinforcement learning.

Ling Pan received the Ph.D. degree from the
Institute for Interdisciplinary Information Sciences,
Tsinghua University, in 2022, under the supervision
of Prof. Longbo Huang. She also spent time at
Stanford University, the University of Oxford, and
Microsoft Research Asia, during the Ph.D. study.
She was a Post-Doctoral Fellow with MILA under
the supervision of Prof. Yoshua Bengio. She is
currently an Assistant Professor with the Department
of Electronic and Computer Engineering and the
Department of Computer Science and Engineering

(by courtesy), The Hong Kong University of Science and Technology.
Her research interests include generative flow networks (GFlowNets), deep
reinforcement learning, and multi-agent systems.

Zhixuan Fang (Member, IEEE) received the B.S.
degree in physics from Peking University, China,
in 2013, and the Ph.D. degree in computer science
from Tsinghua University, Beijing, China, in 2018.
He is currently a tenure-track Assistant Professor
with the Institute for Interdisciplinary Information
Sciences (IIIS), Tsinghua University. His research
interests include the design and analysis of multi-
agent systems, blockchain, and networked systems.

Fu Xiao (Member, IEEE) received the Ph.D.
degree in computer science and technology from
the Nanjing University of Science and Technology,
Nanjing, China, in 2007. He is currently a
Professor and the Ph.D. Supervisor with the School
of Computers, Nanjing University of Posts and
Telecommunications. His research interests include
wireless sensor networks and mobile computing.
He is a member of the Association for Computing
Machinery.

Longbo Huang (Senior Member, IEEE) is currently
a Professor with the Institute for Interdisciplinary
Information Sciences (IIIS), Tsinghua University,
Beijing, China. He has held visiting positions at the
LIDS Laboratory, MIT, CUHK, Bell-Labs France,
and Microsoft Research Asia (MSRA). He was
a Visiting Scientist at the Simons Institute for
the Theory of Computing in Fall 2016. He is an
ACM Distinguished Scientist, a CCF Distinguished
Member, an IEEE ComSoc Distinguished Lecturer,
and an ACM Distinguished Speaker. He received

the Outstanding Teaching Award from Tsinghua University in 2014 and
the Google Research Award and the Microsoft Research Asia Collaborative
Research Award in 2014. He was selected for the MSRA StarTrack Program
in 2015. He received the ACM SIGMETRICS Rising Star Research Award
in 2018. He serves/served on the editorial board for IEEE JOURNAL
ON SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS
ON COMMUNICATIONS, ACM TRANSACTIONS ON MODELING AND
PERFORMANCE EVALUATION OF COMPUTING SYSTEMS, IEEE/ACM
TRANSACTIONS ON NETWORKING, Performance Evaluation (Elsevier),
and IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE.

Authorized licensed use limited to: Tsinghua University. Downloaded on October 17,2024 at 08:48:28 UTC from IEEE Xplore. Restrictions apply.

