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Abstract

We study the K-Max combinatorial multi-armed bandits problem with continuous out-

come distributions and weak value-index feedback: each base arm has an unknown continu-

ous outcome distribution, and in each round the learning agent selects K arms, obtains the

maximum value sampled from these K arms as reward and observes this reward together

with the corresponding arm index as feedback. This setting captures critical applications

in recommendation systems, distributed computing, server scheduling, etc. The continuous

K-Max bandits introduce unique challenges, including discretization error from continuous-

to-discrete conversion, non-deterministic tie-breaking under limited feedback, and biased

estimation due to partial observability. Our key contribution is the computationally effi-

cient algorithm DCK-UCB, which combines adaptive discretization with bias-corrected con-

fidence bounds to tackle these challenges. For general continuous distributions, we prove

that DCK-UCB achieves a Õ(T 3/4) regret upper bound, establishing the first sublinear regret

guarantee for this setting. Furthermore, we identify an important special case with exponen-

tial distributions under full-bandit feedback. In this case, our proposed algorithm MLE-Exp

enables Õ(
√
T ) regret upper bound through maximal log-likelihood estimation, achieving

near-minimax optimality.

1 Introduction

Multi-armed bandits (MABs) provide a powerful framework for sequential decision-making un-
der uncertainty, balancing exploration and exploitation to maximize cumulative rewards. Among
its variants, Combinatorial MABs (CMABs) Cesa-Bianchi and Lugosi (2012); Chen et al. (2013)
have gained significant attention due to applications in online advertising, networking, and influ-
ence maximization (Gai et al., 2012; Kveton et al., 2015a; Chen et al., 2009, 2013). In CMABs,
an agent selects a subset of arms as the combinatorial action for each round, and the environment
will return the reward signal according to the outcome of selected arms.

As a popular variant, K-Max Bandits (Goel et al., 2006; Gopalan et al., 2014) focuses on
the maximum outcomes within a selected subset of K arms. This framework naturally captures
real-world scenarios where the decision quality only depends on the extreme singular outcomes.
For example, in recommendation system, modern ad platforms must select K products to display
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from a pool of candidates, where the customer will select the most preferred one. In this case, the
extreme preference reflects the recommendation efficiency of selection. Likewise, in distributed
computing tasks, a scheduler may choose K servers for parallel processing, and the overall com-
pletion metric depends on the server with the fastest response while feedback from others can
be overshadowed.

Motivated by the prevalence of continuous real-valued signals (e.g., ratings of selected prod-
ucts in online advertising, job completion time in distributed computing, and latency in server
scheduling) and the fact that only partial observations may be accessible in modern applications,
we study the Continuous K-Max Bandits problem with value-index feedback. Here, each arm
has an unknown continuous distribution, and upon selecting a set of K arms, the learner only
observes the maximum outcome among the chosen arms alongside the index of the arm that
attained that maximum value.

WhileK-Max bandits have received considerable attention (Simchowitz et al., 2016; Chen et al.,
2016a; Agarwal et al., 2020), existing theoretical works face three critical limitations when tack-
ling the continuous distribution and value-index feedback: First, most existing algorithms require
semi-bandit feedback (Chen et al., 2016a; Simchowitz et al., 2016; Wang and Chen, 2017), while
practical systems often restrict observations to the winning arm’s index and value. The key chal-
lenge here is that the observation under semi-bandit feedback is unbiased, while the observation
under value-index feedback is biased, since we only observe an outcome when it is the win-
ner. Second, greedy approaches based on submodular optimization (Streeter and Golovin, 2008;
Fourati et al., 2024) face inherent (1−1/e) approximation limits (Nemhauser et al., 1978), which
results in weaker regret guarantees. Third, existing solutions to K-Max bandits mostly assume
binary (Simchowitz et al., 2016) or finitely supported outcomes (Wang et al., 2023). The contin-
uous nature of real-world outcomes, along with the value-index feedback, introduces challenges
in discretization error and learning efficiency tradeoff, biased estimators due to nondeterministic
tie-breaking under discretization, etc.

Our primary contribution is a novel framework for Continuous K-Max Bandits with value-
index feedback that addresses these challenges through two key technical innovations: (i) We
formalize the discretization of continuous K-Max bandits into a discrete K-Max bandits (see
Sections 4.1 to 4.3). In this process, we control the error term from discretization and establish
the utilization of the efficient offline α-approximated optimization oracle for any α < 1, avoiding
the unacceptable approximation error by traditional greedy algorithms that leads to a linear
regret. (ii) Due to the nondeterministic tie-breaking effect arising from the continuous-to-discrete
transformation under value-index feedback, the agent cannot achieve an unbiased estimation
under computationally tractable discretization (as detailed in Section 4.4). We develop a bias-
corrected discretization method and a novel concentration analysis with bias-aware error control
(Lemma 4.5) that jointly manage estimation variance and discretization-induced bias to achieve
sublinear regret.

Contributions. Our novel techniques lead to the development of the DCK-UCB algorithm (Al-
gorithm 1) for K-Max bandits with general continuous distributions. The DCK-UCB algorithm

achieves a regret upper bound of Õ(T 3/4), and is efficient both computationally and statistically.
To the best of our knowledge, this represents the first computationally tractable algorithm with
a sublinear guarantee for continuous K-Max bandits under value-index feedback.

We further consider exponential K-Min bandits, a special case of continuous K-Max bandits,
where outcomes of every arm follow exponential distributions. By utilizing the special prop-
erty of exponential distributions, we avoid using a discretization method and biased estimators.
Following this idea, we adapt the maximum log-likelihood estimation algorithm MLE-Exp (Algo-

rithm 2), and propose an algorithm that achieves a better Õ(
√
T ) regret upper bound, which is
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nearly minimax optimal.

Paper organization. Section 2 introduces related works of continuous K-Max bandits. Sec-
tion 3 formalizes the continuous K-Max bandits problem. Section 4 describes our algorithm and
analysis for general continuous K-Max bandits. Section 5 details the exponential distribution
special case and an MLE-based algorithm with better regret guarantees. Complete proofs of
Sections 4 and 5 are presented in the appendices.

Notations. For any integer n ≥ 1, we use [n] to denote the set {1, 2, . . . , n}. The notation

O is used to suppress all constant factors, while Õ is used to further suppress all logarithmic
factors. Bold letters such as x are typically used to represent a set of elements {xi}. Unless
expressly stated, log(x) refers to the natural logarithm of x. Throughout the text, {Ft}Tt=0 is
used to denote the natural filtration; that is, Ft represents the σ-algebra generated by all random
observations made within the first t time slots.

2 Related Works

The K-Max bandit problem represents a significant departure from traditional Combinatorial
Multi-Armed Bandits (CMABs) (Cesa-Bianchi and Lugosi, 2012; Chen et al., 2013). While stan-
dard CMAB frameworks only need to learn the expected outcomes of every arms (Chen et al.,
2013, 2014; Kveton et al., 2015b; Combes et al., 2015; Liu et al., 2023b), K-Max bandits, whose
reward signal is the maximum outcome within selected arms (Goel et al., 2006; Gopalan et al.,
2014), require to learn more information about the probability distribution of every arms, and
necessitate novel approaches to balance the exploration-exploitation tradeoff. Existing literature
on K-Max bandits can be categorized by feedback type as follows.

Value Feedback Certain scenarios involve the environment returning only the numerical re-
ward, which corresponds to the maximum outcome of selected arms, known as the full-bandit

feedback. Gopalan et al. (2014) obtained the regret upper bounds O
(√(

N
K

)
T

)
for the K-

Max bandits through a Thompson Sampling scheme. However, their approach requires the
ground truth parameter to be in a known finite set, and their regret scales exponentially with
K. Simchowitz et al. (2016) considered the pure exploration task while their results are lim-
ited to Bernoulli outcome distributions. Streeter and Golovin (2008); Yue and Guestrin (2011);
Nie et al. (2022); Fourati et al. (2024) investigated the submodular maximization perspective
and yield (1 − 1/e)-approximation regret guarantees via greedy selection, and K-Max bandits
naturally satisfy the submodular assumption. However, these approximation regret guarantees
lead to linear regret when the baseline policy is the true optimal subset (Eq. (1) in this pa-
per). It still remains open on achieving sublinear regret bounds in general K-Max bandits with
full-bandit feedback.

Value-Index Feedback In this case, the feedback provides both the maximum outcome (re-
ward) and the corresponding arm index. It looks similar to a CMAB problem with probabilistic
triggering feedback (Wang and Chen, 2017; Liu et al., 2023b, 2024b), i.e., with certain probabil-
ity, we observe arm i to be the winner, and also get an observation on arm i’s outcome. The
main difference is that in these CMAB researches, it is often assumed that conditioning on we
observe arm i’s outcome, the random distribution of this observed outcome is the same as the
real outcome of arm i without such condition (at least the mean should be the same). However,
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this is not the case in K-Max bandits, i.e., conditioning on arm i being the winner, the observed
outcome of arm i must have some bias to the real outcome. Under this feedback protocol, the
most related work of (Wang et al., 2023) considered the discrete K-Max bandits with a finite

outcome support and a deterministic tie-breaking rule, achieving an Õ(
√
T ) regret upper bound.

Simchowitz et al. (2016) also investigated the value-index feedback for Bernoulli outcomes. How-
ever, their algorithm cannot work for the continuous case studied in this paper due to non-zero
discretization error and the nondeterministic tie-breaking.

Semi-Bandit Feedback Semi-bandit feedback reveals the outcome of every selected arm in
the subset, providing the learner with detailed observations to estimate each arm’s distribution.
Several studies (Simchowitz et al., 2016; Jun et al., 2016; Chen et al., 2016a,b; Slivkins et al.,
2019) have leveraged this rich feedback to achieve O(

√
T ) regret upper bounds for discrete

or continuous K-Max bandits with unbiased estimation for every arm’s outcome distribution.
However, due to the abundant unbiased observation, their proposed algorithm becomes very
different from ours and cannot be applied to our setting.

3 Preliminaries

We study the continuous K-Max bandits, denoted as B∗, where an agent interacts with N arms
A = [N ]. For each arm i ∈ [N ], there is a corresponding continuous random distribution Di such
that Xi ∼ Di, where Xi is the outcome of arm i.

The agent will play T rounds in total. At each time step t ∈ [T ], the agent needs to select
an action St from the feasible action set S = {S ⊆ A | |S| = K}, i.e., a subset of A with size
K. Here 1 < K < N is a given constant. After selecting St, the environment first samples
outcomes Xi(t) ∼ Di for all i ∈ St, and all the random variables Xi(t) (for different i, t pairs)
are sampled independently. Then the environment returns value-index feedback (rt, it), where
rt = maxi∈St

Xi(t) is the maximum outcome, and it = argmaxi∈St
Xi(t) is the index of the arm

that achieves this maximum outcome. Besides, rt is also the reward of the agent in time step
t. Note that ties, shall they occur (we denote this event as ¬E0), are resolved in an arbitrary
manner, although P[¬E0] = 0 since Di’s are continuous distributions. We denote the expected
reward of an action S as r∗(S), which is given by:

r∗(S) := E[max{Xi : i ∈ S}] =
∫ 1

0

r · dPmax{Xi:i∈S}(r).

The objective of the K-Max bandits is to select actions St properly to maximize the cumulative
reward

∑T
t=1 r

∗(St) in T rounds.
Let S∗ denote the optimal action S∗ := argmaxS∈S r

∗(S). We evaluate the performance of
the agent by the regret metric, which is defined by

R(T ) := E

[
T∑

t=1

r∗(S∗)− r∗(St)
]
, (1)

where the expectation is taken over the uncertainty of {St}Tt=1.
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4 Algorithm for K-Max Bandits with General Continuous

Distribution

We now present our solution framework for continuous K-Max bandits, beginning with the
fundamental regularity condition that enables discretization-based learning:

Assumption 4.1. Each outcome distribution Di is supported on [0, 1] with a bi-Lipschitz con-
tinuous cumulative distribution function (CDF) Fi. Specifically, there exists L ≥ 1 such that for
any i ∈ [N ] and 0 ≤ v < u ≤ 1:

1

L
(u− v) ≤ Fi(u)− Fi(v) ≤ L(u− v).

Many studies on MAB or CMAB consider [0, 1]-supported arms (Abbasi-Yadkori et al., 2011;
Chen et al., 2013; Slivkins et al., 2019; Lattimore and Szepesvári, 2020). The bi-Lipschitz conti-
nuity is also common in practice (Li et al., 2017; Wang et al., 2019; Liu et al., 2023a) and satisfied
by many distributions such as (truncated) Gaussians, mixed uniforms, Beta distributions, etc.

4.1 The Discretization of Countinuous K-Max Bandits

Since it is complex to estimate the general continuous distributions, a natural idea is to per-
form discretization with granularity ǫ. Below, we define the discrete K-Max bandits (called B̄)
converted from the continuous K-Max bandits B∗, where each discrete arm’s outcome X̄i is
discretized from the continuous random variable Xi under ǫ:

X̄i =
∑

j∈[M ]

1 [Xi ∈Mj ] · vj , (2)

where M = ⌈1/ǫ⌉1 is the number of discretization bins, Mj := [(j − 1)ǫ, jǫ) is the j-th bin,
and vj := (j − 1)ǫ is the approximate value of j-th bin. We also let M≤j = ∪j′≤jMj′ and
M≥j = ∪j′≥jMj′ . For simplicity, we denote p∗i,j as the probability that Xi falls in Mj . For every
i ∈ [N ] and j ∈ [M ],

p∗i,j := P[Xi ∈Mj ] = P[X̄i = vj ].

Therefore, B̄ only depends on the discrete probability set p∗ = {p∗i,j : i ∈ [N ], j ∈ [M ]}. Moreover,
we set r̄(S;p∗) as the expected reward of an action S in discrete K-Max bandits under the
probability set p∗:

r̄(S;p∗) =
∑

j∈[M ]

vj · P
[
max
i∈S

(X̄i) = vj

]

A key observation is that maxi∈S(X̄i) = vj is equivalent to maxi∈S(Xi) ∈ Mj . This means
P
[
maxi∈S(X̄i) = vj

]
= P [maxi∈S(Xi) ∈Mj ], which gives an upper bound for the discretization

error as follows. The formal version is provided by Lemma A.1 (in Appendix A.1).

Lemma 4.2. For any S ∈ S, we have

|r∗(S)− r̄(S;p∗)| ≤ ǫ.
1Without loss of generation, we can take ǫ such that Mǫ > 1.
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4.2 Converting a Discrete Arm to a Set of Binary Arms

Follow the classical process in Wang et al. (2023), we can convert a discrete arm Xi to a set of
binary arms and estimate the parameters q∗ = {q∗i,j : i ∈ [N ], j ∈ [M ]} instead of p∗, where

q∗i,j :=
p∗i,j

1−
∑

j′>j p
∗
i,j′

, p∗i,j = q∗i,j ·
∏

j′>j

(1 − q∗i,j′). (3)

Let {Ȳi,j}i∈[N ],j∈[M ] be independent binary random variables such that Ȳi,j takes value vj with
probability q∗i,j , and value 0 otherwise. Then maxj∈[M ]{Ȳi,j} has the same distribution as X̄i. For

any S ∈ S, define r̄q(S; q) as the expected maximum reward of {Ȳi,j}i∈S,j∈[M ] with probability
set q. Then we have

Lemma 4.3. For any p and q satisfying Eq. (3), we have

r̄q(S; q) = r̄(S;p), ∀S ∈ S.

The formal version of this lemma is given in Lemma A.2. Moreover, the function r̄q is
monotone with respect to q, i.e.,

Lemma 4.4 (Wang et al. (2023, Lemma 3.1)). For two probability set q′ and q such that q′i,j ≥
qi,j holds for any i ∈ [N ], j ∈ [M ], we have

r̄q(S; q
′) ≥ r̄q(S; q), ∀S ∈ S.

4.3 An Efficient Offline Oracle for Discrete K-Max Bandits

For any discrete K-Max bandits with probability set p, we can apply the PTAS algorithm
(Chen et al., 2016a) as a polynomial time offline α-approximation optimization oracle for any
given α < 1. Moreover, for any probability set q, we can convert it to p by Eq. (3), input this
p to the PTAS oracle and get the approxiamation solution PTAS(p) satisfying

r̄q (PTAS(p); q) = r̄ (PTAS(p);p)

≥ α ·max
S∈S

r̄(S;p) = α ·max
S∈S

r̄q(S; q).
(4)

In the following algorithm, we set α = 1 − ǫ and control the relative error to achieve sublinear
regret guarantees.

4.4 Efficient Algorithm for Continuous K-Max Bandits

Building on the methodology in previous subsections, we adapt the framework in Wang et al.
(2023), and present DCK-UCB (Discretized Continuous K-Max with Upper Confidence Bounds),
the first efficient algorithm addressing K-Max bandits with general continuous outcome distribu-
tions. Generally speaking, we first discretize the countinuous K-Max bandits to discrete K-Max
bandits. Then we convert every discrete arm to a set of binary arms, and estimate the corre-
sponding q∗. Finally, we convert q∗ back to p∗, input p∗ to the PTAS oracle, and get the action
we want to select.

Algorithm 1 presents the pseudo-code of DCK-UCB. In Line 3, we calculate the optimistic
estimator q̄ti,j which upper bounds q∗i,j with high probability. This is done by adding two up-

per confidence bonus terms βti,j and (K − 1)L4/j2. Analysis shows that q̄ti,j ≥ q∗i,j with high
probability (Lemma 4.5). The detailed discussion on this estimator will be given in the following
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Algorithm 1 DCK-UCB: Discretization ContinuousK-Max Bandits with Upper Confidence Bonus

Input: Discretization granularity ǫ, upper confidence bonuses {βti,j : i ∈ [N ], j ∈ [M ], t ∈
[T ]}, and the offline α-approximated optimization oracle PTAS for discrete K-Max bandits
(Chen et al., 2016a).

1: Initialize M ← ⌈1/ǫ⌉, q̂1i,1 ← 1 for every i ∈ [N ], and q̂1i,j ← 0 for every i ∈ [N ], j > 1.
2: for t = 1, 2, . . . , T do
3: For every i ∈ [N ], j ∈ [M ], set

q̄ti,j ← min

{
q̂ti,j + βti,j + (K − 1)

L4

j2
, 1

}
. (5)

4: Convert q̄t to p̄t by Eq. (3).
5: Choose action St ← PTAS(p̄t).
6: Observe (rt, it) by executing action St. Denote jt as the range number of rt, i.e., rt ∈Mjt .
7: For any i, j ∈ [N ]× [M ],

Ct(i, j) = Ct−1(i, j) + 1 [i = it & j = jt]

and

SCt(i, j) = SCt−1(i, j) + 1 [i ∈ St & j ≥ jt]

8: Calculate estimator q̂t+1
i,j ←

Ct(i,j)
SCt(i,j)

, for every i ∈ [N ] and j ∈ [M ].

9: end for

paragraphs. In Lines 4-5, the agent converts this q̄ to p̄, and then runs the offline α-approximation
optimization oracle PTAS with α = 1− ǫ to get action St for execution. In Line 6, the agent gets
the value-index return (rt, it), and discretizes the value rt to the index of bin jt, i.e., rt ∈Mjt . In
Lines 7-8, the agent estimates q∗ by two counters: Ct(i, j) counts the times when (i, j) exactly
equals the feedback (it, jt), and SCt(i, j) counts the number of steps τ ≤ t satisfying i ∈ Sτ and
jτ ≤ j. As outlined in Algorithm 1, each step of the algorithm has polynomial time and space
complexity, which demonstrates the computational tractability of DCK-UCB.

Biased Estimator. The key challenge in the algorithm design and theoretical analysis is that
q̂ti,j is not an unbiased estimator for q∗i,j . This means that except for the confidence radius due
to the randomness of the environment, we still need another bonus term to bound the bias to
guarantee that q̄ti,j is a UCB for q∗i,j .

Specifically, note that

q∗i,j =
p∗i,j

1−∑j′>j p
∗
i,j′

=
p∗i,j∑j

j′=1 p
∗
i,j′

=
P[Xi ∈Mj]

P[Xi ∈M≤j]

If we have an assumption that when i ∈ Sτ and jτ = j, Xi(τ) ∈Mj implies i = iτ , then we can
guarantee that q̂ti,j = Ct(i, j)/SCt(i, j) is an unbiased estimator for q∗i,j . This is because that

in this case, Ct(i,j)
SCt(i,j)

= # of iτ=i,jτ=j
# of i∈Sτ ,jτ≤j

is the fraction of Xi(τ) ∈ Mj condition on i ∈ Sτ , jτ ≤ j,
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which is an unbiased estimator for

P[Xi(τ) ∈Mj | i ∈ Sτ , jτ ≤ j]

=
P[Xi(τ) ∈Mj , i ∈ Sτ , jτ ≤ j]

P[i ∈ Sτ , jτ ≤ j]

=
P[Xi(τ) ∈Mj ] · P[Xk(τ) ∈M≤j, ∀k ∈ Sτ , k 6= i]

P[Xi(τ) ∈M≤j ] · P[Xk(τ) ∈M≤j, ∀k ∈ Sτ , k 6= i]

=
P[Xi(τ) ∈Mj ]

P[Xi(τ) ∈M≤j ]

However, we know that in the discrete K-Max bandits converted from the continuous K-Max
bandits, there is no such assumption (different from Wang et al. (2023) who requires deter-
ministic tie-breaking rule). When multiple arm has Xi(τ) ∈ Mj , the observed winning arm
it = argmaxXi(τ) is not a fixed one, and even we do not know the distribution of the winner.
Because of this, we cannot guarantee that condition on i ∈ Sτ , jτ ≤ j, we increase the counter
for every time Xi(τ) ∈Mj . Some steps that Xi(τ) ∈Mj but Xi(τ) is not the winner are missed.
This nondeterministic tie-breaking effect, arising from the continuous-to-discrete transformation,
induces systematic negative bias in conventional estimators {q̂ti,j}. Therefore, to guarantee that
our used {q̄ti,j} is an upper confidence bound of {q∗i,j}, we need another bonus term (i.e., the

term (K − 1)L
4

j2 ), given by a novel concentration analysis with bias-aware error control. This is
shown in the following key lemma, where the formal version is in Lemma A.3.

Lemma 4.5. Under Assumption 4.1, let the confidence radius be defined as

βti,j :=

√
8
log(NMt)

SCt−1(i, j)
. (6)

Then with probability at least 1− t−2,

∣∣q̂ti,j − q∗i,j
∣∣ ≤ βti,j + (K − 1) · (L4/j2), (7)

holds for every t ∈ [T ], i ∈ [N ] and j ∈ [M ].

The bound in Lemma 4.5 decomposes into an exploration bonus term βti,j and a bias com-

pensation term (K − 1)L
4

j2 . The exploration bonus term arises from the randomness of the en-

vironment, which is almost the same with existing researches (Wang and Chen, 2017; Liu et al.,
2023b; Wang et al., 2023). The bias compensation term, on the other hand, comes from the
nondeterministic tie-breaking effect in the continuous-to-discrete transformation. As we have
explained, this term is because that condition on i ∈ Sτ , jτ ≤ j, there are some time steps that
Xi(τ) ∈Mj but arm i is not the winner and thus we miss these steps in counter Cti,j . When this
happens, we know that there must be at least one other arm i′ 6= i, i′ ∈ Sτ such that Xi′(τ) ∈Mj .
This probability can be upper bounded by

∑

i′ 6=i,i′∈Sτ

P[Xi(τ) ∈Mj , Xi′(τ) ∈Mj | i ∈ Sτ , jτ ≤ j]

=
∑

i′ 6=i,i′∈Sτ

p∗i,jp
∗
i′,j∑

j′≤j p
∗
i,j′
∑

j′≤j p
∗
i′,j′
≤ (K − 1)

(Lǫ)2

(jǫ/L)2
,

where the last inequality is because of bi-Lipschitz assumption Assumption 4.1.
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Notably, the bias term dominates for small j values due to the influence of other arms becomes
higher when condition on jτ ≤ j with smaller j. However, our regret analysis in Section 4.5
suggests that the amplified bias for small j has diminishing impact on cumulative regret – a
crucial property enabling our sublinear regret guarantee.

4.5 Theoretical Results

We establish the first efficient algorithm DCK-UCB (Algorithm 1) which enjoys the sublinear regret
guarantees in continuous K-Max bandits problem with value-index feedback.

Theorem 4.6. Under Assumption 4.1, let the offline optimization oracle be a PTAS implemen-
tation (Chen et al., 2016a). Given the exploration bonus term βti,j in Eq. (6), discretization

granularity ǫ = O(L−2K−3/4N1/4T−1/4) and PTAS approximation factor α = 1− ǫ, Algorithm 1
enjoys the regret guarantee

R(T ) ≤ Õ(L2N
1

4K
5

4T
3

4 ).

The formal statement with precise constants appears in Theorem A.13. Our analysis reveals
that careful calibration of the discretization-error versus statistical-estimation trade-off enables
the first sublinear regret guarantee O(T 3/4) for continuous K-Max bandits.

Comparison to Prior Works. The O(T 3/4) regret upper bound of DCK-UCB (Algorithm 1)
shown in Theorem 4.6 advances the state-of-the-art in several directions. Wang et al. (2023)
can achieve an O(

√
T ) regret upper bound in the discrete K-Max bandits, but their algorithm

cannot work for the continuous case due to non-zero discretization error and nondeterministic tie-
breaking. Recent work on submodular bandits (Pasteris et al., 2023; Fourati et al., 2024) attains
O(T 2/3) regret via greedy oracles, but this approach suffers dual limitations: (1) The baseline of

their regret is
∑T
t=1(1−1/e)r∗(S∗), but not

∑T
t=1 r

∗(S∗). In our definition, their regret becomes
linear. (2) Their algorithm requires the availability of submitting any subset of A with size less
than or equal to K, which may not be practical in some applications, such as recommendation
systems or portfolio selection that need to always submit size K subsets. Our framework resolves
both issues through our novel bias-corrected estimators with PTAS integration, which is both
efficient and effective in dealing with continuous K-Max bandits.

4.6 Proof Sketch of Theorem 4.6

In this section we outline the proof of Theorem 4.6, which consists of four main steps.

Step 1: From continuous regret to discretized regret. Let ∆t := r∗(S∗)− r∗(St) be the
regret for each round t. To control the regret, we aim to bound the summation of ∆t.

R(T ) = E

[
T∑

t=1

∆t

]
.

We first transfer the regret from continuousK-Max bandits to the discrete case. With Lemma 4.2,
we have

∆t ≤ r̄(S∗;p∗)− r̄(St;p∗) + 2ǫ.
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Step 2: From discretized regret to estimation error. Recall the definition of r̄q in
Section 4.2, we have r̄q(S; q) = r̄(S;p) for any S ∈ S, and probability set p, q satisfying Eq. (3).
By the monotonicity of r̄q (in Lemma 4.4) and the concentration analysis (in Lemma 4.5), we
have with high probability, ∀(i, j) ∈ [N ]× [M ], q̄ti,j ≥ q∗i,j holds for any t ∈ [T ], which implies

r̄q(S
∗; q̄t) ≥ r̄q(S∗; q∗).

Moreover, by the property of α-approximated offline optimization oracle PTAS (Chen et al.,
2016a) (in Eq. (4)) with α = 1− ǫ,

(1− ǫ)r̄q(S∗; q̄t) ≤ (1− ǫ)max
S∈S

r̄q(S; q̄
t) ≤ r̄q(St; q̄t),

which implies the conversion from ∆t to the estimation error term

∆t ≤ r̄q(S∗; q̄t)− r̄q(St; q∗) + 2ǫ

≤ (1− ǫ)r̄q(S∗; q̄t)− r̄q(St;a∗) + 3ǫ

≤ r̄q(St; q̄t)− r̄q(St; q∗) + 3ǫ.

Therefore, we then focus on bounding the estimation error ∆̄t := r̄q(St; q̄
t)− r̄q(St; q∗) to guar-

antee the sublinear regret upper bound:

R(T ) = E

[
T∑

t=1

∆t

]
≤ E

[
T∑

t=1

∆̄t

]
+ 3T ǫ. (8)

Step 3: Decompose the estimation error. By similar methods as achieving the Trigger-
ing Probability Modulated (TPM) smoothness condition in cascading bandits (Wang and Chen,
2017) and K-Max bandits for binary distributions (Wang et al., 2023), we propose the following
lemma.

Lemma 4.7. Denote the probability of event {jt ≤ j} as

Q∗
j(St) :=

∏

k∈St,j′>j

(1 − q∗k,j′ ).

Then we have

∆̄t ≤ 2
∑

i∈St,j∈[M ]

Q∗
j (St) · vj ·

∣∣q̄ti,j − q∗i,j
∣∣ . (9)

Equipped with Lemma 4.7, we decompose ∆̄t into two parts through our novel concentration
analysis in Lemma 4.5 and the definition of optimistic estimator q̄ti,j in Eq. (5)

∆̄t ≤ 4
∑

i∈St,j∈[M ]

Q∗
j (St) · vj · βti,j

︸ ︷︷ ︸
Bonust

+ 4
∑

i∈St,j∈[M ]

Q∗
j (St) · vj · (K − 1)

L4

j2

︸ ︷︷ ︸
Biast

.
(10)
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Step 4: Bound the Bonus and Bias terms. For the Bonus term, we apply standard analysis
for combinatorial bandits with triggering arms in (Wang and Chen, 2017; Liu et al., 2023b) where
we encounter NM binary arms in total and select KM binary arms in every action and get

E

[
T∑

t=1

Bonust

]
≤ Õ

(√
(NM) · (KM) · T

)
. (11)

To control the bias terms, we recall that vj = (j − 1)ǫ. Therefore, we can write

Biast ≤ 4K2L4
∑

j∈[M ]

(j − 1)ǫ/j2

≤ O
(
K2L4ǫ log(M)

)
,

(12)

Therefore, combining Eqs. (8) and (10) to (12), the regret can be bounded by

R(T ) ≤ E

[
T∑

t=1

Bonust + Biast

]
+O(T ǫ)

≤ Õ
(√

NKM2T +K2L4T ǫ
)
,

where M = ⌈1/ǫ⌉. By taking ǫ = O(T− 1

4K− 3

4N
1

4L−2), we have

R(T ) ≤ Õ
(
L2N

1

4K
5

4T
3

4

)
.

5 Better Performance in a Special Case: Exponential Dis-

tributions

In this section, we demonstrate how specific distributional structure enables the improvement of
the regret guarantee from Õ(T 3

4 ) to Õ(
√
T ). Specifically, we investigate the special case where

each distribution Di for i ∈ [N ] follows the exponential distribution with linear parameterization.
Exponential distributions naturally model arrival or failure times in networked systems, job

completion times in distributed computing, and service durations in queuing systems. A canoni-
cal application arises in server scheduling, where the goal is to select K servers to minimize the
service latency. Here, each server’s latency can be modeled as an exponential random variable
with a rate parameter µi, and the overall performance of the K selected servers is the lowest
latency achieved among them. Here, the random outcome Xi can be viewed as a random loss,
and the winning loss is the minimum one. Moreover, we consider a linear parameterization to
parameter µi, which allows incorporating features like distance, traffic, or weather conditions
into the model.

5.1 The K-Min Exponential Bandits

Based on the intuition, in this section we consider a special case of K-Max bandits: the K-Min
exponential bandits. Here each arm i generates loss Xi from an exponential distribution with
linear parameterization. Specifically, each outcome distribution is an exponential distribution,
i.e., Xi ∼ Di = Exp(µi) where µi > 0 is the parameter of arm i. Moreover, we assume that there
exists a d-dimension unknown parameter θ∗ ∈ R

d and a known feature mapping φ : [N ] → R
d

such that µi = 〈φ(i), θ∗〉 holds for any i ∈ [N ]. The feature mapping φ satisfies that ‖φ(i)‖2 ≤ 1

11



and the unknown parameter θ∗ satisfies θ∗ ∈ Θ ⊂ R
d, where supθ∈Θ ‖θ‖2 ≤ V . The agent

observes only the minimum loss ℓt = mini∈St
Xi(t) after playing subset St ∈ S = {S ⊆ [N ] :

|S| = K}. That is, we consider the weaker full bandit feedback case.
Let ℓ∗(S) := E[ℓt | S] be the expected loss for action S ∈ S, we further denote the best action

S∗ = argminS∈S ℓ
∗(S) and similarly introduce the regret metric to evaluate the performance of

this agent:

R(T ) = E

[
T∑

t=1

ℓ∗(St)− ℓ∗(S∗)

]
.

Note that we can let Zi(t) = −Xi(t) and view Zi(t) as a kind of reward, and let rt =
maxi∈St

Zi(t). Then we can see that ℓt = mini∈St
Xi(t) = mini∈St

−Zi(t) = −maxi∈St
Zi(t) =

−rt. By this way, we can view K-Min exponential bandits as a special case of K-Max bandits.
However, one important difference is that in K-Min exponential bandits, we do not have value-
index feedback, i.e., we do not know the winner’s index. This is a full bandit feedback setting,
and making K-Min exponential bandits even more challenging.

5.2 Algorithm and Results

The key observation in K-Min exponential bandits is that the minimum of several exponential
distributions still follows an exponential distribution. That is, we have

min
i∈S

Xi ∼ Exp

(
∑

i∈S

µi

)
= Exp

(
∑

i∈S

〈φ(i), θ∗〉
)
.

Therefore, it becomes much easier to estimate the true parameter θ∗ by MLE. Specifically, let
ψ(S) :=

∑
i∈S φ(i), ∀S ∈ S. Then with chosen action St and parameter θ, the observed loss

should follow the exponential distribution Exp
(∑

i∈S φ(i)
T θ
)
= Exp

(
ψ(S)T θ

)
, whose probabil-

ity density function is f(x) = ψ(S)T θe(−ψ(S)
T θx). Because of this, the log-likelihood function

is
Lt(ℓt;St, θ) : = − log

(
ψ(St)

⊤θe(−ψ(St)
⊤θℓt)

)
. (13)

Denote Lt(θ) as the summation of Lt and a regularization term

Lt(θ;λ) :=
∑

i<t

Li(ℓi;Si, θ) +
λ

2
‖θ‖2, (14)

where λ is the regularization factor. Then we present the algorithm MLE-Exp for K-Min expo-
nential bandits in Algorithm 2.

In Line 2 of Algorithm 2, we estimate the MLE θ̂t by minimizing the summation of the
log-likelihood function and the regularization term Lt(θ, λt). Given λt a priori, we will write
Lt(θ) instead of Lt(θ, λt) for simplicity. Inspired by Liu et al. (2024a); Lee et al. (2024); Liu et al.

(2024b), in Line 3, we construct a confidence set Ct(θ̂t; δ), centered at the MLE θ̂t with confidence
radius γt(δ), based on the gradient term gt(θ) := −∇θLt(θ) +

∑
i<t ℓiψ(Si) and Hessian matrix

Ht(θ) := ∇2
θLt(θ):

Ct(θ̂t; δ) :=

{
θ ∈ Θ :

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥
H−1

t (θ)
≤ γt(δ)

}
, (15)
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Algorithm 2 MLE-Exp: MLE for K-Min Exponential Bandits

Input: Regularization factors {λt}t∈[T ], confidence radius {γt}t∈[T ], and probability constant δ.
1: for t = 1, . . . , T do
2: Compute MLE θ̂t by

θ̂t ← argmin
θ∈Rd

Lt(θ;λt),

where Lt(θ;λ) is given in Eq. (14).

3: Construct the confidence set Ct(θ̂t; δ, λt) according to Eq. (29)

4: (St, θ̃t)← argmaxS∈S,θ∈Ct(θ̂t;δ,λt)
〈ψ(S), θ〉

5: Play action St and observe the loss ℓt.
6: end for

where γt is the confidence radius. Then in Line 4, we apply a double oracle to look for the action
S whose expected loss under a parameter θ in the confidence set (1/〈ψ(S), θ〉) is minimized.
Finally, we select this greedy action in Line 5 and use the observation to update the next time
step’s MLE and confidence set.

The regret guarantees of Algorithm 2 is given below.

Theorem 5.1. With δ = 1/T , λt = Θ(d logT ), and γt = Θ(
√
d logT ), Algorithm 2 satisfies:

R(T ) ≤ Õ
(√

d3T
)
.

Compared with the O(T
3

4 ) regret upper bound for general continuous K-Max bandits, here

the regret upper bound is reduced to O(T
1

2 ) (which is nearly minimax optimal) even without
the feedback of winner’s index, due to the utilization of the exponential distribution’s property.
In short, we do not need to use a discretization method and can directly construct an unbiased
estimator for the known parameter θ∗. The proof is inspired by previous analysis of general
linear bandits (Lee et al., 2024; Liu et al., 2024a) and logistics bandits (Liu et al., 2024b), and
we defer the detailed proof to Appendix B.

6 Conclusion and Future Work

We presented the first computationally efficient algorithm DCK-UCB (Algorithm 1) for Continuous
K-Max Bandits with value-index feedback, resolving fundamental challenges in handling general
continuous outcome distributions in K-Max Bandits and achieving the first sublinear regret
guarantees Õ(T 3/4). When considering exponential distributions as a special case of continuous
K-Max bandits, we demonstrated that an MLE-based algorithm MLE-Exp (Algorithm 2) can

achieve the Õ(
√
T ) regret upper bound (Theorem 5.1) even under full-bandit feedback, which

further advances the general result.
Further enhancing the Õ(T 3/4) regret for the general continuous distribution case is an in-

teresting future direction. One potential avenue involves developing variance-aware algorithms
that adapt to second-order statistics of the outcomes. Such methods might theoretically reduce
the regret to Õ(T 2/3) through refined analysis for the variance-adaptive exploration bonus terms,
inspired by its successful applications in CMABs (Liu et al., 2023b, 2024b). However, such ap-
proaches face inherent challenges due to the biased estimations induced by nondeterministic
tie-breaking, which create new concentration challenges for variance terms of biased observa-
tions. Overcoming these limitations may require developing new bias-corrected concentrations
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for variance estimators or alternative feedback models tailored to continuous outcomes. Other
directions include developing lower bounds and relaxing the bi-Lipschitz assumption.
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A Omitted Proofs in Section 4

In this section, we present the omitted proofs in Section 4, which include the full proof of
Theorem 4.6.

A.1 Discretization Error

First we show that the discretization from original continuous problem B∗ to B̄ with discretiza-
tion width ǫ will involve controllable error in expected loss, which is shown in Lemma 4.2 and
formalized by the following lemma.

Lemma A.1. For any S ∈ S, we have

r̄(S;p∗) ≤ r∗(S) ≤ r̄(S;p∗) + ǫ. (16)

Proof. Notice that we have

P

[
max
i∈S

(X̄i) = vj

]
=
∑

I⊂S

∏

i∈I

P[X̄i = vj ] ·
∏

k∈S,k/∈I

P[X̄k < vj ]

=
∑

I⊂S

∏

i∈I

P[Xi ∈Mj ] ·
∏

k∈S,k/∈I

P[Xk ∈M≤j−1]

= P

[
max
i∈S

(Xi) ∈Mj

]
.

Therefore, by definition of r∗(S), we have

r∗(S) =
∑

j∈[M ]

∫

r∈Mj

r · dPmaxi∈S(Xi)(r)

≥
∑

j∈[M ]

(j − 1)ǫ

∫

r∈Mj

dPmaxi∈S(Xi)(r)

=
∑

j∈[M ]

(j − 1)ǫ · P
[
max
i∈S

(Xi) ∈Mj

]

=
∑

j∈[M ]

(j − 1)ǫ · P
[
max
i∈S

(X̄i) = (j − 1)ǫ

]

= r̄(S;p∗),

where the inequality is given by the definition of Mj. Then we achieve the left-hand side of Eq.
(16). For the other side, we can similarly establish

r∗(S) =
∑

j∈[M ]

∫

r∈Mj

r · dPmaxi∈S(Xi)(r)

≤
∑

j∈[M ]

jǫ

∫

r∈Mj

dPmaxi∈S(Xi)(r)

=
∑

j∈[M ]

(j − 1)ǫ · P
[
max
i∈S

(Xi) ∈Mj

]
+ ǫ ·

∑

j∈[M ]

P

[
max
i∈S

(Xi) ∈Mj

]

= r̄(S;p∗) + ǫ.
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A.2 Converting to Binary Arms

As detailed in Section 4.2, we set

q∗i,j :=
p∗i,j

1−
∑

j′>j p
∗
i,j′

, p∗i,j = q∗i,j ·
∏

j′>j

(1 − q∗i,j′),

which implies

q∗i,j =
p∗i,j

1−∑j′>j p
∗
i,j′

=
p∗i,j∑j

j′=1 p
∗
i,j′

=
P[Xi ∈Mj ]

P[Xi ∈M≤j ]
.

For any given probability set q = {qi,j : i ∈ [N ], j ∈ [M ]}, we can apply Eq. (3) to get the
corresponding p defined as

pi,j = qi,j ·
∏

j′>j

(1− qi,j′ ).

Assume {Y q

i,j}i∈[N ],j∈[M ] is the set of independent binary random variables that Y q

i,j takes value

vj = (j − 1)ǫ with probability qi,j and takes value 0 otherwise. And {Xp

i }i∈[N ] is the set of
independent discrete random variables that Xp

i takes value vj with probability pi,j for every
j ∈ [M ]. Therefore, by simple calculation, we have maxj∈[M ]{Y q

i,j} has the same distribution of

Xp

i .
r̄q(S; q) is defined as the expected maximum reward of {Y q

i,j}i∈S,j∈[M ] Then we can write

r̄q(S; q) =
∑

j∈[M ]

vj · (Qj(S; q)−Qj−1(S; q)) , (17)

where we denote for simplicity

Qj(S; q) :=
∏

k∈S,j′>j

(1− qk,j′ ). (18)

Qj(S; q) is actually the probability of the event that every arm in {Ȳk,j′}k∈S,j′>j does not sample
a non-zero value.

Equipped with the above statement, we can establish the following lemma:

Lemma A.2. For any p and q satisfying Eq. (3), we have for any S ∈ S,
r̄q(S; q) = r̄(S;p).

Proof. Notice that by definition, we have

r̄(S;p) = E

[
max
i∈S

Xp

i

]
,

and

r̄q(S; q) = E

[
max
i∈S

max
j∈[M ]

Y q

i,j

]
.

Notice that maxj∈[M ]{Y q

i,j} has the same distribution of Xp

i , we have

r̄q(S; q) = E

[
max
i∈S

max
j∈[M ]

Y q

i,j

]

= E

[
max
i∈S

Xp

i

]
= r̄(S;p).
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A.3 Biased Concentration

We aim to use q̂ti,j to estimate q∗i,j . However, this is a biased estimation. In this section, we
carefully control the gap between the biased estimator q̂ti,j and the true probability q∗i,j .

We set ct(i, j) := 1[(it, jt) = (i, j)] which is Ft-measurable. Then Algorithm 1 counts the
summation of ct(i, j) as Ct(i, j):

Ct(i, j) =

t∑

τ=1

cτ (i, j),

which is Ft−1-measurable.
For given action St in round t, the environment will sample a set of outcomes {Xi(t) ∼ Di :

i ∈ St}. The value-index feedback is rt = maxi∈St
Xi(t), it = argmaxi∈St

Xi(t). Algorithm 1
consider jt such that rt ∈Mjt . We denote It = argmaxi∈St

X̄i(t), where X̄i(t) is the discretized
of Xi(t) induced by Eq. (2). Notice that under event E0, argmaxi∈S Xi(t) is unique. But It
might be a set with multiple indices. We emphasize that St is Ft−1 measurable and (it, rt, jt, It)
are Ft measurable.

Then we can provide the following lemma.

Lemma A.3. Under event E0, we have for every t ∈ [T ] and (i, j) ∈ [N ]× [M ],

∣∣q̂ti,j − q∗i,j
∣∣ ≤

√
8
log(NMt)

SCt(i, j)
+ (K − 1) · (L4/j2),

with probability at least 1− T−2, where we denote this good event as E1.

Proof. Denote qi,j(St) := 1[i ∈ St] ·P[(it, jt) = (i, j) | jt ≤ j, St], and q∗i,j(St) := 1[i ∈ St] · P[It ∋
i, jt = j | jt ≤ j, St]. Therefore, for given i ∈ [N ], j ∈ [M ], we have

E[1[i ∈ St] · ct(i, j) · 1[jt ≤ j] | St] = qi,j(St) · P[jt ≤ j | St]

By summation over time step 1, 2, · · · , t, we have

t∑

τ=1

E[1[i ∈ Sτ ] · cτ (i, j) · 1[jτ ≤ j] | Sτ ] =
t∑

τ=1

qi,j(Sτ ) · P[jτ ≤ j | Sτ ]

=

t∑

τ=1

E [qi,j(Sτ ) · 1[jτ ≤ j] | Sτ ] ,

which implies that

E




∑

τ≤t,i∈Sτ ,jτ≤j

cτ (i, j)

∣∣∣∣∣∣
S1, S2, · · · , St


 = E




∑

τ≤t,jτ≤j

qi,j(Sτ )

∣∣∣∣∣∣
S1, · · · , St




Notice that St is Ft−1-measurable. By the definition of qi,j(Sτ ), we have

E




∑

τ≤t,i∈Sτ ,jτ≤j

cτ (i, j)− qi,j(Sτ )

∣∣∣∣∣∣
Ft−1



 = 0.
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If we count the number of τ that satisfies i ∈ Sτ and jτ ≤ j is exactly SCt(i, j) =
∑t

τ=1 1[i ∈
Sτ , jτ ≤ j]. Therefore, by Azuma-Hoeffding inequality, we have for fixed SCt(i, j), with proba-
bility at least 1− δ,

∣∣∣∣∣∣

∑

τ≤t,i∈Sτ ,jτ≤j

cτ (i, j)−
∑

τ≤t,i∈Sτ ,jτ≤j

qi,j(Sτ )

∣∣∣∣∣∣
≤
√
2SCt(i, j) log(T/δ),

By union inequality, we have
∣∣∣∣∣∣

∑

τ≤t,i∈Sτjτ≤j

cτ (i, j)−
∑

τ≤t,i∈Sτ ,jτ≤j

qi,j(Sτ )

∣∣∣∣∣∣
≤
√
8SCt(i, j) log(NMT ),

holds for any t ∈ [T ], SCt(i, j), and (i, j) ∈ [N ] × [M ] with probability at least 1 − T−2. We
denote this good event as E1 which satisfies P[¬E1] ≤ T−2.

We recall the definition of q̂ti,j given in Algorithm 1

q̂ti,j =
Ct(i, j)

SCt(i, j)
=

∑
τ≤t cτ (i, j)

SCt(i, j)
=

∑
τ≤t 1[i ∈ Sτ ] · cτ (i, j)1[jτ ≤ j]

SCt(i, j)
.

Under this good event E1, we have for every t ∈ [T ] and (i, j) ∈ [N ]× [M ],

∣∣∣∣q̂
t
i,j −

∑
τ≤t,i∈Sτ ,jτ≤j

qi,j(Sτ )

SCt(i, j)

∣∣∣∣ ≤
√

8
log(NMT )

SCt(i, j)

Below we bound the difference between q∗i,j(St) and qi,j(St) for any St ∈ S. For given (i, j)
with i ∈ St, we have

q∗i,j(St)− qi,j(St) = P[It ∋ i, jt = i | jt ≤ j, St]− P[it = i, jt = j | jt ≤ j, St]
= P[It ∋ i, it 6= i, jt = j | jt ≤ j, St]

≤
∑

k∈St,k 6=i

P[Xi ∈Mj]P[Xk ∈Mj ]

P[Xi ∈M≤j]P[Xk ∈M≤j ]

≤ (K − 1) · (Lǫ)2

(jǫ/L)2
= (K − 1) · L4/j2,

where the last inequality holds by Assumption 4.1 and P[Xi ∈M≤j ] =
∑j
j′=1 p

∗
i,j ≤ j ǫL , ∀i ∈ [N ].

Notice that for every St ∈ S and i ∈ St, j ∈ [M ], we have

q∗i,j(St) = P[It ∋ i, j = jt | jt ≤ j, St]

=
P[It ∋ i, j = jt | St]

P[jt ≤ j | St]

=
P[Xi(t) ∈Mj & xk(t) ∈M≤j, ∀k ∈ St | St]

P[xk(t) ∈M≤j, ∀k ∈ St | St]

=
P[Xi ∈Mj] · P[Xk ∈M≤j , ∀k ∈ S, k 6= i]

P[Xi ∈M≤j] · P[Xk ∈M≤j, ∀k ∈ S, k 6= i]

=
P[Xi ∈Mj]

P[Xi ∈M≤j]

= P[Xi ∈Mj | Xi ∈M≤j ]

= q∗i,j .
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Therefore, we have

∣∣q̂ti,j − q∗i,j
∣∣ =

∣∣∣∣q̂
t
i,j −

∑
τ≤t,i∈Sτjτ≤j

q∗i,j(Sτ )

SCt(i, j)

∣∣∣∣ ≤
√
8
log(NMt)

SCt(i, j)
+ (K − 1) · (L4/j2)

A.4 Optimistic Estimation

Lemma A.4. For βti,j given in Eq. (6), under event E0 and E1, we have

q̄ti,j ≥ q∗i,j .

Moreover, by the offline (1− ǫ)-approximated optimization oracle PTAS (Chen et al., 2013), we
have

r̄q(St, q̄
t) ≥ (1− ǫ) · r̄q(S∗; q̄t).

Proof. Notice that in Algorithm 1 we define

q̄ti,j = min

{
q̂ti,j + βti,j +

(K − 1)L4

j2
, 1

}
.

By Lemma A.3, we have under ¬E0 and E1,

q̂ti,j ≥ q∗i,j − βti,j −
(K − 1)L4

j2
,

where the inequality holds by the definition of βti,j in Eq. (6) and SCt−1(i, j) ≤ SCt(i, j). Since
q∗i,j ≤ 1, we have

q̄ti,j ≥ q∗i,j .

Since in Algorithm 1, we set action St ← PTAS(p̂t) where p̂t is converted from q̂t by Eq. (3).
Then by Lemmas 4.3 and 4.4, we have

r̄q(St; q̄
t) = r̄(St; p̄

t) ≥ (1− ǫ)max
S∈S

r̄(S; p̄t) ≥ (1− ǫ)r̄(S∗; p̄t) = (1 − ǫ)r̄q(S∗; q̄t).

A.5 Regret Decomposition

Lemma A.5. Denote Q∗
j (St) :=

∏
k∈St,j′>j

(1− q∗k,j′ ). We have

|r̄q(St; q̄t)− r̄q(St; q∗)| ≤ 2
∑

i∈St,j∈[M ]

Q∗
j (St) · vj ·

∣∣q̄ti,j − q∗i,j
∣∣ . (19)

Proof. This lemma is given by directly apply Lemma 3.3 in Wang et al. (2023) by definition of
r̄q in Eq. (17).
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Lemma A.6. Under Assumption 4.1, we can bound the regret of Algorithm 1 by

R(T ) ≤ E

[
T∑

t=1

Bonust + Biast

∣∣∣∣∣E0, E1
]
+ 3T ǫ+ T−1,

where Bonust and Biast is defined by

Bonust := 4
∑

i∈St,j∈[M ]

Q∗
j (St) · vj · βti,j , (20)

and

Biast := 4
∑

i∈St,j∈[M ]

Q∗
j (St) · vj · (K − 1)

L4

j2
. (21)

Proof. This lemma formalize the first three steps of proof sketch. Denote ∆t := r∗(S∗)− r∗(St),
we have

R(T ) = E [∆t] .

By Lemma 4.2, we have

∆t ≤ r̄(S∗;p∗)− r̄(St;p∗) + 2ǫ.

Then we have

R(T ) ≤ P[E0] · E
[
T∑

t=1

∆t

∣∣∣∣∣E0
]
+ P[¬E0] · T

≤ E

[
T∑

t=1

∆t

∣∣∣∣∣E0
]

≤ E

[
T∑

t=1

r̄(S∗;p∗)− r̄(St;p∗)

∣∣∣∣∣E0
]
+ 2T ǫ,

where the first inequality holds by property of conditional expectations and ∆t ≤ 1 and the
second inequality is due to P[¬E0] = 0.

Notice that under E0 and E1, by Lemmas 4.4 and A.4, we have

r̄q(St; q
t) ≥ (1 − ǫ)r̄q(S∗; q̄t) ≥ (1− ǫ)r̄q(S∗; q∗).

Then with Lemma A.2, we have

R(T ) ≤ E

[
T∑

t=1

r̄q(S
∗; q∗)− r̄q(St; q∗)

∣∣∣∣∣E0
]
+ 2T ǫ

≤ E

[
T∑

t=1

r̄q(S
∗; q∗)− r̄q(St; q∗)

∣∣∣∣∣E0, E1
]
+ P[¬E1] · T + 2T ǫ

≤ E
[
r̄q(St; q

t)− r̄q(St; q∗)
]
+ 3T ǫ+ T−1,

where the last inequality holds by ǫr̄q(S
∗;p∗) ≤ ǫ and P[¬E1] ≤ T−2 shown in Lemma A.3.

Therefore, applying Lemma 4.7, we get

R(T ) ≤ E

[
T∑

t=1

Bonust + Biast

∣∣∣∣∣E0, E1
]
+ 3T ǫ+ T−1,

where Bonust and Biast is defined in Eqs. (20) and (21).
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A.6 Bounding the Bonus Terms

We apply similar methods in Wang and Chen (2017); Liu et al. (2023b) to give the bounds of∑
t Bonust. We first give the following definitions.

Definition A.7 (Wang and Chen (2017, Definition 5)). Let (i, j) ∈ [N ] × [M ] be the index
of binary arm and l be a positive natural number, define the triggering probability group (of
actions)

Slj = {S ∈ S | 2−l < Q∗
j (S) ≤ 2−l+1}.

Notice {Slj}l≥1 forms a partition of {S ∈ S | Q∗
j (S) > 0}.

Definition A.8 (Wang and Chen (2017, Definition 6)). For each group Slj (Definition A.7), we

define a corresponding counter N l
i,j . In a run of a learning algorithm, the counters are maintained

in the following manner. All the counters are initialized to 0. In each round t, if the action St is
chosen, then update N l(i, j) to N l(i, j) + 1 for every (i, j) that i ∈ St, St ∈ Slj . Denote N l

t(i, j)

at the end of round t with N l(i, j). In other words, we can define the counters with the recursive
equation below:

N l
t(i, j) =





0, if t = 0,

N l
t−1(i, j) + 1, if t > 0, i ∈ St, St ∈ Slj ,

N l
t−1(i, j), otherwise.

Definition A.9 (Wang and Chen (2017, Definition 7)). Given a series of integers {lmax
i,j }i∈[N ],j∈[M ],

we say that the triggering is nice at the beginning of round t (with respect to lmax
i,j ), if for every

group Slj(Definition A.7) identified by binary arm (i, j) and 1 ≤ l ≤ lmax
i,j , as long as

√
8 log(NMT )

1
3N

l
t−1(i, j) · 2−l

≤ 1,

there is SCt−1(i, j) ≥ 1
3N

l
t−1(i, j) · 2−l. We denote this event with E2(t). It implies

βti,j =

√
8 log(NMT )

SCt−1(i, j)
≤
√

8 log(NMT )
1
3N

l
t−1(i, j) · 2−l

.

Therefore, we show that E2(t) happens with high probability for every t.

Lemma A.10 (Wang and Chen (2017, Lemma 4)). For a series of integers {lmax
i,j }i∈[N ],j∈[M ],

P[¬E2(t)] ≤
∑

i∈[N ],j∈[M ]

lmax
i,j t−2,

for every round t ≥ 1.

Proof. We prove this lemma by showing P[N l
t−1(i, j) = s, SCt−1(i, j) ≤ 1

3N
l
t−1(i, j) · 2−l] ≤ t−3,

for any fixed s with 0 ≤ s ≤ t − 1 and
√

8 log(NMT )
1

3
s·2−l ≤ 1. Let tk be the round that N l(i, j)

is increased for the k-th time, for 1 ≤ k ≤ s. Let Zk = 1[Stk ∋ i, jtk ≤ j] be a Bernoulli
variable, that is, SCtk(i, j) increase in round tk. When fixing the action Stk , Zk is independent
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from Z1, . . . , Zk−1. Since Stk ∈ Slj , E[Zk | Z1, . . . , Zk−1] ≥ 2−l. Let Z = Z1 + · · · + Zs. By
multiplicative Chernoff bound (Upfal and Mitzenmacher, 2005), we have

P

{
Z ≤ 1

3
s · 2−l

}
≤ exp

(
−
(
2
3

)2
s · 2−l
2

)
≤ exp

(
−
(
2
3

)2
18 log t

2

)
< exp(−3 log t) = t−3.

By the definition of SCt−1(i, j) and the condition N l
t−1(i, j) = s, we have SCt−1(i, j) ≥ Z.

Thus

P[N l
t−1(i, j) = s, SCt−1(i, j) ≤

1

3
N l
t−1(i, j) · 2−l]

≤ P[N l
t−1(i, j) = s, Z ≤ 1

3
s · 2−l]

≤ P[Z ≤ 1

3
s · 2−l] ≤ t−3.

By taking i, j over [N ]× [M ], l over 1, . . . , lmax
i,j , s over 0, . . . , t− 1 and applying the uninon

bound, the lemma holds.

Lemma A.11. For given constant C, we have

T∑

t=1

Bonus(t) ≤ 16NM + 12288
KNM2 log(NMT )

C
+ TC +

π2

6

⌈
log2

16KM

C

⌉
.

Proof. For given constant C, we can define the following notations.

lmax
i,j :=

⌈
log2

16KM

C

⌉
, ∀(i, j) ∈ [N ]× [M ], (22)

and for every integer l,

κl,T (C, s) :=





2 · 2−l s = 0√
96 · 2−l log(NMT )/s 1 ≤ s ≤ Bl,T (C)

0 s > Bl,T (C)

, (23)

where Bl,T (C) is given by

Bl,T (C) :=
⌊
6144 · 2−lK2M2 log(NMT )/C2

⌋
. (24)

By Wang and Chen (2017, Lemma 5), if Bonus(t) ≥ C, under event E2(t), we have

Bonus(t) ≤
∑

i∈St,j∈[M ]

κli,j ,T (C,N
li
t−1(i, j)),

where li,j is the index of group S
li,j
j ∋ St. This is because we have

Bonus(t) ≤ −C + 8
∑

i∈St,j∈[M ]

Q∗
j (St) · (j − 1)ǫ ·min{βti,j, 1}

≤ 8
∑

i∈St,j∈[M ]

(
Q∗
j(St) ·min{βti,j , 1} −

C

8KM

)
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Case 1: 1 ≤ li,j ≤ lmax
i,j . We have

Q∗
j (St) ≤ 2 · 2−li,j .

Under E2(t), we have

min
{
βti,j , 1

}
= min

{√
8 log(NMT )

SCt−1(i, j)
, 1

}
≤ min

{√
8 log(NMT )

1
3N

li,j
t−1(i, j) · 2−li,j

, 1

}
,

and

Q∗
j(St) ·min

{
βti,j , 1

}
≤ 2 · 2−li,j ·min

{√
8 log(NMT )

1
3N

li,j
t−1(i, j) · 2−li,j

, 1

}

≤ min

{√
96 · 2−li,j log(NMT )

N
li,j
t−1(i, j)

, 2 · 2−li,j
}
.

(25)

If N
li,j
t−1(i, j) ≥ Bli,j ,T (C) + 1, then

√
96 · 2−li,j log(NMT )

N
li,j
t−1(i, j)

≤ C

8KM
,

which implies Q∗
j (St) ·min

{
βti,j , 1

}
− C/8KM ≤ 0.

If N
li,j
t−1(i, j) = 0, we have Q∗

j (St) ·min
{
βti,j , 1

}
≤ Q∗

j (St) ≤ 2 · 2−li,j , which implies

Q∗
j(St) ·min

{
βti,j , 1

}
− C

8KM
≤ κli,j ,T (C, 0)

Otherwise, for 1 ≤ N li,j
t−1(i, j) ≤ Bli,j ,T (C), we haveQ∗

j (St)·min
{
βti,j , 1

}
≤ κli,j ,T (C,N

li,j
t−1(i, j))

by Eqs. (23) and (25). Therefore, we get

Q∗
j (St) ·min

{
βti,j , 1

}
− C

8KM
≤ κli,j ,T (C,N

li,j
t−1(i, j))

Case 2: li,j ≥ lmax
i,j + 1. We have

Q∗
j (St) ·min

{
βti,j , 1

}
≤ 2 · 2−li,j ≤ 2 · C

16KM
≤ C

8KM
,

which shows that Q∗
j (St) ·min

{
βti,j , 1

}
− C/8KM ≤ 0. If N

li,j
t−1(i, j) = 0. Therefore, we finally

get

Bonus(t) ≤ 8
∑

i∈St,j∈[M ]

κli,j ,T

(
C,N

li,j
t−1(i, j)

)
,

for the case of good event E2(t) happens and Bonus(t) ≥ C.
Notice that under good events E0, E1, we have

T∑

t=1

Bonus(t) ≤
T∑

t=1

1[{Bonus(t) ≥ C} ∩ E2(t)] · Bonus(t) + T · C +

T∑

t=1

P[E2(t)]

≤
T∑

t=1

8 ·
∑

i∈St,j∈[M ]

κli,j ,T

(
C,N

li,j
t−1(i, j)

)

︸ ︷︷ ︸
(I)

+TC +
π2

6
· max
i∈[N ],j∈[M ]

lmax
i,j .
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where the first inequality is due to Bonus(t) ≤ 1 and definition, and the second one is due to
Lemma A.10. The key is bounding (I):

(I) = 8 ·
∑

i∈[N ],j∈[M ]

∞∑

l=1

N l
T−1

(i,j)∑

s=0

κl(C, s)

= 8 ·
∑

i∈[N ],j∈[M ]

∞∑

l=1



2 · 2−l +
Bl,T (C)∑

s=1

√
96 · 2−l log(NMT )

s





≤ 8 ·
∑

i∈[N ],j∈[M ]

∞∑

l=1

(
2 · 2−l + 2 ·

√
96 · 2−l log(NMT ) ·

√
Bl,T (C)

)
,

where the inequality holds by the fact that
∑n

s=1

√
1/s ≤ 2

√
n. Therefore, by the definition of

Bl,T (C) in Eq. (24), we have

(I) ≤ 8 ·
∑

i∈[N ],j∈[M ]

∞∑

l=1

(
2 · 2−l + 1536 · 2

−lKM log(NMT )

C

)

= 8 ·
∑

i∈[N ],j∈[M ]

(
2 + 1536 · KM log(NMT )

C

)
·
(

∞∑

l=1

2−l

)

≤ 16NM + 12288
KNM2 log(NMT )

C
.

Therefore, we get

T∑

t=1

Bonus(t) ≤ 16NM + 12288
KNM2 log(NMT )

C
+ TC +

π2

6

⌈
log2

16KM

C

⌉
.

A.7 Bounding the Bias Terms

Lemma A.12. Under Assumption 4.1, we have

T∑

t=1

Bias(t) ≤ 4K2L4T ǫ log(M + 1).

Proof. Notice that
∑
j∈[M ] 1/j ≤ log(M + 1) for ǫ < 1/2, we have

Bias(t) ≤ 4K ·
∑

i∈St,j∈[M ]

Q∗
j (St) · ǫL4/j

= 4K2L4ǫ ·
∑

j∈[M ]

1

j

≤ 4K2L4ǫ log(M + 1).

Therefore, we have

T∑

t=1

Gap(t) ≤ 4K2L4T ǫ log(M + 1).
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A.8 Proof of Theorem 4.6

Theorem A.13 (Formal version of Theorem 4.6). By setting βti,j in Eq. (6) and ǫ < 1/2, we
can control the regret of Algorithm 1 under Assumption 4.1 by

R(T ) ≤ 12289
√
NKM2T log(NMT ) + T ǫ

(
4KL4 log(M + 1) + 3

)

+ 16NM + π2
(
log2(

√
KM2T log(NMT )/N) + 5

)
/6 + T−1

= Õ
(√

NKM2T + L4K2T ǫ
)
,

where M = ⌈1/ǫ⌉. If we further take ǫ = O
(
L−2K− 3

4N
1

4T− 1

4

)
, we have

R(T ) = Õ(L2N
1

4K
5

4T
3

4 ).

Proof. By Lemma A.6, we have

R(T ) ≤ E

[
T∑

t=1

Bonust + Biast

∣∣∣∣∣E0, E1
]
+ 3T ǫ+ T−1,

Take constant C as

C :=

√
NKM2 log(NMT )

T
. (26)

Then Lemma A.11 shows that

T∑

t=1

Bonus(t) ≤ 16NM + 12289
√
NM2KT log(NMT ) + π2

(
log2(

√
KMT log(NMT )/N) + 5

)
/6.

Lemma A.12 demonstrates that

T∑

t=1

Bias(t) ≤ 4K2L4T ǫ log(M + 1).

Therefore, by calculating the summation of the bonus and bias terms, we can bound the regret
by

R(T ) ≤ E

[
T∑

t=1

Bonus(t) + Gap(t)

∣∣∣∣∣E0, E1
]
+ T−1 + 3T ǫ

≤ 12289
√
NKM2T log(NMT ) + T ǫ

(
4KL4 log(M + 1) + 3

)

+ 16NM + π2
(
log2(

√
KM2T log(NMT )/N) + 5

)
/6 + T−1

= Õ
(√

NKM2T + L4K2T ǫ
)
,

which finishes the proof.
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B Omitted proofs in Section 5

This proof mainly applies the techniques for general linear bandits Liu et al. (2024a); Lee et al.
(2024). Given action S ∈ S to the environment, we assume that ℓS is the random variable of the
loss, i.e., E[ℓS ] = ℓ∗(S).

We have

gt(θ;λ) : = −∇θLt(θ;λ) +
∑

i<t

ℓiψ(Si)

=
∑

i<t

1

ψ(Si)⊤θ
· ψ(Si)− λθ.

Ht(θ;λ) : = ∇2
θL(θ;Ht)

= −∇θgt(θ;λ)

= λI +
∑

i<t

ψ(Si)ψ(Si)
⊤

(ψ(Si)⊤θ)2
.

B.1 Concentration Argument for MLE

Lemma B.1 (MLE Concentration). For L∗ := supS∈S ℓ
∗(S), M1 := L∗/

√
2, and V = sup{‖θ‖2 :

θ ∈ Θ}, set

λt := max

{
1,

2dM1

V
· log

(
e

√
1 +

tL∗

d
+

1

δ

)}
, (27)

and

γt(δ, λt) :=
√
λt

(
1

2M1
+ V

)
+

2M1d√
λt

(
log(2) +

1

2
log

(
1 +

tL∗

λtd

))
+

2M1√
λt

log(1/δ). (28)

Then we have with probability at least 1− δ,

θ∗ ∈ Ct(θ̂t; δ, λt) :=
{
θ ∈ Θ :

∥∥∥gt(θ;λt)− gt(θ̂t;λt)
∥∥∥
H−1

t (θ;λt)
≤ γt(δ, λt)

}
, (29)

holds for any t ∈ [T ]. We denote the confidence set as Ct(θ̂t; δ, λt) and this good event as Ξ.

Proof. For simplicity, we denote the filtration of history as Ht := (S1, Y1, · · · , St−1, Yt−1, St).
Then we have

ℓt ∼ exp(ψ(St)
⊤θ∗), E[ℓt | Ht] =

1

ψ(St)⊤θ∗
,

by the property of exponential distribution and definition of ψ(S). Since we have

θ̂t ← argmin
θ∈Rd

Lt(θ;λt),

by Algorithm 2. Then by KKT condition, we have

∂Lt(θ;λt)
∂θ

∣∣∣∣
θ=θ̂t

= 0⇒ gt(θ̂t;λt)−
∑

i<t

ℓiψ(Si) = 0
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Notice that by definition of gt,

gt(θ
∗;λt) =

∑

i<t

1

ψ(Si)⊤θ∗
· ψ(Si)− λtθ∗.

Denote εt := ℓt − E[ℓt | Ht] = ℓt − 1/(ψt(St)
⊤θ∗), we have

gt(θ̂t;λt)− gt(θ∗;λt) =
∑

i<t

εiψ(Si) + λtθ
∗.

Fix s ≥ 0, we have

E[exp(sεt) | Ht] = E

[
exp

(
sℓt −

s

ψt(St)⊤θ∗

)]

= exp

(
− s

ψt(St)⊤θ∗

)
· E [exp(sℓt) | Ht] ,

and by calculation,

E[exp(sεt) | Ht−1] = exp

(
− s

ψ(St)⊤θ∗

)
· E [exp(sℓt) | Ht]

= exp

(
− s

ψ(St)⊤θ∗

)
·
∫

([0,+∞)

ψ(St)
⊤θ∗ exp(−(ψ(St)⊤θ∗ − s)y)dy

= exp

(
− 1

ℓ∗t
s+ log(ℓ∗t )− log(ℓ∗t − s)

)
,

where we use ℓ∗t := ψt(St)
⊤θ∗ for simplicity. Consider the case for s < ℓ∗t , by intermediate value

theorem, we have

log(ℓ∗t )− log(ℓ∗t − s) = s · 1
ℓ∗t
− s2

2ξ2
,

for some ξ ∈ [ℓ∗t − s, ℓ∗t ]. We further denote

L∗ = sup
S∈S

ℓ∗(S). (30)

Therefore, we can set constant 0 ≤ s ≤ L∗, which gives

log(ℓ∗t )− log(ℓ∗t − s) ≤ s ·
1

ℓ∗t
− s2

(ℓ∗t )
2
.

Denote νt−1 := −1/(ψ(St)⊤θ∗)2. We have for some constant M1 ≥ L∗/
√
2, and |s| ≤ 1/M1,

E[exp(sεt) | Ht] ≤ exp(s2νt−1).

Applying Janz et al. (2024, Theorem 2) with St :=
∑

i<s εiψ(Si), we can show that with proba-
bility at least 1− δ,
∥∥∥gt(θ̂t;λt)− gt(θ∗;λt)

∥∥∥
H−1

t (θ∗;λt)
≤
∥∥∥∥∥
∑

i<t

εiψi(Si)

∥∥∥∥∥
H−1

t (θ∗;λt)

+ λt ‖θ∗‖H−1

t (θ∗;λt)

≤
√
λt

2M1
+

2M1√
λt

log

(
det(Ht(θ

∗)1/2/λ
d/2
t )

δ

)
+

2M1√
λt
d log(2) +

√
λtV,
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where V = sup{‖θ‖2 : θ ∈ Θ}. Moreover, by definition of Ht(θ
∗;λt), we have

det(Ht(θ
∗;λt))/λ

d
t ≤

(
1 +

tL∗

λtd

)d
,

Therefore, for

γt(δ, λt) ≥
√
λt

(
1

2M1
+ V

)
+

2M1d√
λt

(
log(2) +

1

2
log

(
1 +

tL∗

λtd

))
+

2M1√
λt

log(1/δ),

we have with probability at least 1− δ,

θ∗ ∈ Ct(θ̂t; δ, λt) :=
{
θ ∈ Θ :

∥∥∥gt(θ;λt)− gt(θ̂t;λt)
∥∥∥
H−1

t (θ;λt)
≤ γt(δ, λt)

}
,

holds for any t ∈ [T ].

B.2 Proof of Theorem 5.1

Theorem B.2 (Formal version of Theorem 5.1). By setting δ = 1/T , γt(δ) according to Eq.
(28), and λt according to Eq. (27), Algorithm 2 enjoys the following regret guarantee:

R(T ) ≤ 16γ ·
√
dT ·

√
(ℓ∗(S∗))2(1 + L∗/λ) · log (1 + L∗T/dλ)

+ 256γ2 · dL∗ · log (1 + L∗T/dλ) ·
(
supS∈S(ψ(S)

⊤θ∗)

ℓ∗(S∗)3
+ 2

)
+ 1,

where γ := supt γt(δ) and λt := inft λt.

Proof. Since we have Xi ∼ exp(φ(i)⊤θ∗), then

min
i∈S

Xi ∼ exp

(
∑

i∈S

φ(i)⊤θ∗

)
= exp

(
ψ(S)⊤θ∗

)
,

which shows that

ℓ∗(S) = E

[
min
i∈S

Xi

]
=

1

ψ(S)⊤θ∗
.

Therefore, by second-order Taylor expansion, we have for some ξ ∈ [ℓ∗(St), supt ℓ
∗(St)],

R(T ) = E

[
T∑

t=1

ℓ∗(St)− ℓ∗(S∗)

]

≤ P[Ξ] · E
[
T∑

t=1

1

ψ(St)⊤θ∗
− 1

ψ(S∗)⊤θ∗

∣∣∣∣∣Ξ
]
+ P[¬Ξ] · T

≤ E




T∑

t=1

1

(ψ(St)⊤θ∗)2
·
(
ψ(S∗)⊤θ∗ − ψ(St)⊤θ∗

)

︸ ︷︷ ︸
R1(T )

∣∣∣∣∣∣∣∣∣∣

Ξ



+ E




T∑

t=1

2

ξ3
·
(
ψ(S∗)⊤θ∗ − ψ(St)⊤θ∗

)2

︸ ︷︷ ︸
R2(T )

∣∣∣∣∣∣∣∣∣∣

Ξ



+ 1.
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Under Ξ, we have θ∗ ∈ Ct(θ̂t; δ, λt) for every t ∈ [T ]. Therefore, by Algorithm 2, we have

ψ(S∗)⊤θ∗ ≤ ψ(St)⊤θ̃t. (31)

Under Ξ, we have

R1(T ) ≤
T∑

t=1

1

(ψ(St)⊤θ∗)2
· ψ(St)⊤(θ∗ − θ̃t)

≤
T∑

t=1

1

(ψ(St)⊤θ∗)2
· ‖ψ(St)‖H−1

t (θ∗;λt)
·
∥∥∥θ∗ − θ̃t

∥∥∥
H−1

t (θ∗;λt)
,

where the first inequality is due to Eq. (31) and the second holds by Cauchy-Schwartz inequality.

Notice that θ̃t, θ
∗ ∈ Ct(θ̂t; δ, λt) under Ξ, we have

∥∥∥θ∗ − θ̃t
∥∥∥
H−1

t (θ∗;λt)
≤ 8γt(δ, λt)

by Liu et al. (2024a, Lemma 30). Denote γ := supt∈[T ] γt(δ, λt), we can upper bound R1(T ) by

R1(T ) ≤ 8 ·
T∑

t=1

1

(ψ(St)⊤θ∗)2
· ‖ψ(St)‖H−1

t (θ∗;λt)
· γ.

Denote At := ψ(St)/ψ(St)
⊤θ∗, we haveHt(θ

∗;λ) =
∑

i<tA
⊤
t At+λtI and ‖At‖2 ≤

∑
i∈St
‖φ(i)‖2·

ℓ∗(St) ≤ KL∗. Then we have

R1(T ) ≤ 8γ

√√√√
T∑

t=1

‖At‖2H−1

t (θ∗;λt)
·

√√√√
T∑

t=1

1

(ψ(St)⊤θ∗)2

≤ 16γ ·
√
d(1 +KL∗/λ) · log (1 +KL∗T/dλ) ·

√√√√
T∑

t=1

1

(ψ(St)⊤θ∗)2
,

where the first inequality is due to the Cauchy-Schwartz inequality, and the second inequality
is due to the elliptical potential lemma of Abbasi-Yadkori et al. (2011). Moreover, by Liu et al.
(2024a, Lemma 31), we have

√√√√
T∑

t=1

1

(ψ(St)⊤θ∗)2
≤
√
T · 1

(ψ(S∗)ψ∗)2
+ 2 · R(T )

≤
√
T · (ℓ∗(S∗))2 +

√
2 · R(T ),

which shows that for λ := inft λt,

R1(T ) ≤ 16γ ·
√
d(1 + L∗/λ) · log (1 + L∗T/dλ) ·

√
T · (ℓ∗(S∗))2

+ 16γ ·
√
d(1 + L∗/λ) · log (1 + L∗T/dλ) ·

√
2 · R(T ).

Next we give the upper bound for R2(T ). Recall that

R2(T ) =

T∑

t=1

2

ξ3
·
(
ψ(St)

⊤θ∗ − ψ(S∗)θ∗
)2
.
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Then, under Ξ, we have

R2(T ) ≤
T∑

t=1

2

ξ3
·
〈
ψ(St), θ

∗ − θ̃t
〉2

≤ 2

ℓ∗(S∗)3
·
T∑

t=1

‖ψ(St)‖2H−1

t (θ∗;λt)
· ‖θ∗ − θ̃t‖2H−1

t (θ∗;λt)

≤ 2

ℓ∗(S∗)3
· 64γ2 ·

T∑

t=1

‖ψ(St)‖2H−1

t (θ∗;λt)
,

where the first inequality is according to Eq. (31), the second inequality is due to the Cauchy-
Schwartz inequality, and the last inequality holds by Lemma B.1. Denote

Λt := λtI +
∑

i<t

ψ(Si)
⊤ψ(Si).

Then we have

sup
S∈S

(ψ(S)⊤θ∗) · Λ−1
t ≻ H−1

t (θ∗;λt),

which further implies

R2(T ) ≤
2

ℓ∗(S∗)3
· 64γ2 · sup

S∈S
(ψ(S)⊤θ∗) ·

T∑

t=1

‖ψ(St)‖2Λ−1

t

≤ 2

ℓ∗(S∗)3
· 64γ2 · sup

S∈S
(ψ(S)⊤θ∗) · 2dL∗ log(1 + L∗T/dλ)

=
256

ℓ∗(S∗)3
sup
S∈S

(ψ(S)⊤θ∗) · γ2 · dL∗ log(1 + L∗T/dλ).

Therefore, we have

R(T ) ≤ 16γ ·
√
d(1 + L∗/λ) · log (1 + L∗T/dλ) ·

√
T · (ℓ∗(S∗))2

+ 16γ ·
√
d(1 + L∗/λ) · log (1 + L∗T/dλ) ·

√
2 · R(T )

+
256

ℓ∗(S∗)3
sup
S∈S

(ψ(S)⊤θ∗) · γ2 · dL∗ log(1 + L∗T/dλ) + 1.

Notice that for x ≤ A√x+B, we have x ≤ 2A2 +B. Therefore, we have

R(T ) ≤ 16γ ·
√
dT ·

√
(ℓ∗(S∗))2(1 + L∗/λ) · log (1 + L∗T/dλ)

+ 256γ2 · dL∗ · log (1 + L∗T/dλ) ·
(
supS∈S(ψ(S)

⊤θ∗)

ℓ∗(S∗)3
+ 2

)
+ 1,

≤ Õ
(√

d3T
)
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