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uniINF: Best-of-Both-Worlds Algorithm for

Parameter-Free Heavy-Tailed MABs

Yu Chen ∗† Jiatai Huang ∗‡ Yan Dai ∗§ Longbo Huang ¶

Abstract

In this paper, we present a novel algorithm, uniINF, for the Heavy-Tailed Multi-Armed Bandits
(HTMAB) problem, demonstrating robustness and adaptability in both stochastic and adversar-
ial environments. Unlike the stochastic MAB setting where loss distributions are stationary with
time, our study extends to the adversarial setup, where losses are generated from heavy-tailed dis-
tributions that depend on both arms and time. Our novel algorithm uniINF enjoys the so-called
Best-of-Both-Worlds (BoBW) property, performing optimally in both stochastic and adversarial
environments without knowing the exact environment type. Moreover, our algorithm also possesses
a Parameter-Free feature, i.e., it operates without the need of knowing the heavy-tail parameters
(σ, α) a-priori. To be precise, uniINF ensures nearly-optimal regret in both stochastic and adversar-
ial environments, matching the corresponding lower bounds when (σ, α) is known (up to logarithmic
factors). To our knowledge, uniINF is the first parameter-free algorithm to achieve the BoBW prop-
erty for the heavy-tailed MAB problem. Technically, we develop innovative techniques to achieve
BoBW guarantees for Parameter-Free HTMABs, including a refined analysis for the dynamics of
log-barrier, an auto-balancing learning rate scheduling scheme, an adaptive skipping-clipping loss
tuning technique, and a stopping-time analysis for logarithmic regret.

1 Introduction

Multi-Armed Bandits (MAB) problem serves as a solid theoretical formulation for addressing the
exploration-exploitation trade-off inherent in online learning. Existing research in this area often as-
sumes sub-Gaussian loss (or reward) distributions (Lattimore and Szepesvári, 2020) or even bounded
ones (Auer et al., 2002). However, recent empirical evidences revealed that Heavy-Tailed (HT) distri-
butions appear frequently in realistic tasks such as network routing (Liebeherr et al., 2012), algorithm
portfolio selection (Gagliolo and Schmidhuber, 2011), and online deep learning (Zhang et al., 2020).
Such observations underscore the importance of developing MAB solutions that are robust to heavy-
tailed distributions.

In this paper, we consider the Heavy-Tailed Multi-Armed Bandits (HTMAB) proposed by Bubeck et al.
(2013). In this scenario, the loss distributions associated with each arm do not allow bounded variances
but instead have their α-th moment bounded by some constant σα, where α ∈ (1, 2] and σ ≥ 0 are
predetermined constants. Mathematically, we assume E[|ℓi|α] ≤ σα for every arm i. Although numerous
existing HTMAB algorithms operated under the assumption that the parameters σ and α are known
(Bubeck et al., 2013; Yu et al., 2018; Wei and Srivastava, 2020), real-world applications often present
limited knowledge of the true environmental parameters. Thus we propose to explore the scenario
where the algorithm lacks any prior information about the parameters. This setup, a variant of classical
HTMABs, is referred to as the Parameter-Free HTMAB problem.
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In addition to whether σ and α are known, there is yet another separation that distinguishes our
setup from the classical one. In bandit learning literature, there are typically two types of environments,
stochastic ones and adversarial ones. In the former type, the loss distributions are always stationary,
i.e., they depend solely on the arm and not on time. Conversely, in adversarial environments, the losses
can change arbitrarily, as-if manipulated by an adversary aiming to fail our algorithm.

When the environments can be potentially adversarial, a desirable property for bandit algorithms is
called Best-of-Both-Worlds (BoBW), as proposed by Bubeck and Slivkins (2012). A BoBW algorithm
behaves well in both stochastic and adversarial environments without knowing whether stochasticity
is satisfied. More specifically, while ensuring near-optimal regret in adversarial environments, the al-
gorithmic performance in a stochastic environment should automatically be boosted, ideally matching
the optimal performance of those algorithms specially crafted for stochastic environments.

In practical applications of machine learning and decision-making, acquiring prior knowledge about
the environment is often a considerable challenge (Talaei Khoei and Kaabouch, 2023). This is not only
regarding the distribution properties of rewards or losses, which may not conform to idealized assump-
tions such as sub-Gaussian or bounded behaviors, but also about the stochastic or adversarial settings
the agent palying in. Such environments necessitate robust solutions that can adapt without prior
distributional knowledge. Therefore, the development of a BoBW algorithm that operates effectively
without this prior information – termed a parameter-free HTMAB algorithm – is not just a theoretical
interest but a practical necessity.

Various previous work has made strides in enhancing the robustness and applicability of HTMAB al-
gorithms. For instance, Huang et al. (2022) pioneered the development of the first BoBW algorithm for
the HTMAB problem, albeit requiring prior knowledge of the heavy-tail parameters (α, σ) to achieve
near-optimal regret guarantees. Genalti et al. (2024) proposed an Upper Confidence Bound (UCB)
based parameter-free HTMAB algorithm, specifically designed for stochastic environments. Both algo-
rithms’ regret adheres to the instance-dependent and instance-independent lower bounds established by
Bubeck et al. (2013). Though excited progress has been made, the following important question still
stays open, which further eliminates the need of prior knowledge about the environment:

Can we design a BoBW algorithm for the Parameter-Free HTMAB problem?

Addressing parameter-free HTMABs in both adversarial and stochastic environments presents no-
table difficulties: i) although UCB-type algorithms well estimate the underlying loss distribution and
provide both optimal instance-dependent and independent regret guarantees, they are incapable of
adversarial environments where loss distributions are time-dependent; ii) heavy-tailed losses can be
potentially very negative, which makes many famous algorithmic frameworks, including Follow-the-
Regularized-Leader (FTRL), Online Mirror Descent (OMD), or Follow-the-Perturbed-Leader (FTPL)
fall short unless meticulously designed; and iii) while it was shown that FTRL with β-Tsallis entropy
regularizer can enjoy best-of-both-worlds guarantees, attaining optimal regret requires an exact match
between β and 1/α — which is impossible without knowing α in advance.
Our contribution. In this paper, we answer this open question affirmatively by designing a single
algorithm uniINF that enjoys both Parameter-Free and BoBW properties — that is, it i) does not
require any prior knowledge of the environment, e.g., α or σ, and ii) its performance when deployed
in an adversarial environment nearly matches the universal instance-independent lower bound given
by Bubeck et al. (2013), and it attains the instance-dependent lower bound in stochastic environments
as well. For more details, we summarize the advantages of our algorithm in Table 1. Our research
directly contributes to enhancing the robustness and applicability of bandit algorithms in a variety of
unpredictable and non-ideal conditions. Our main contributions are three-fold:
• We develop a novel BoBW algorithm uniINF (see Algorithm 1) for the Parameter-Free HTMAB prob-

lem. Without any prior knowledge about the heavy-tail shape-and-scale parameters (α, σ), uniINF
can achieve nearly optimal regret upper bound automatically under both adversarial and stochastic
environments (see Table 1 or Theorem 3 for more details).

• We contribute several innovative algorithmic components in designing the algorithm uniINF, including
a refined analysis for Follow-the-Regularized-Leader (FTRL) with log-barrier regularizers (refined
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Table 1: Overview of Related Works For Heavy-Tailed MABs

Algorithm a α-Free? σ-Free? Env. Regret Opt?

Lower Bound

(Bubeck et al., 2013)
— — —

Ω
(∑

i6=i∗(
σα

∆i
)

1
α−1 logT

)

—
Ω
(
σK1−1/αT

1/α
)

RobustUCB

(Bubeck et al., 2013)
✗ ✗ Only Stoc.

O
(∑

i6=i∗(
σα

∆i
)

1
α−1 logT

)
✓

Õ
(
σK1−1/αT

1/α
)

✓

Robust MOSS

(Wei and Srivastava, 2020)
✗ ✗ Only Stoc.

O
(∑

i6=i∗(
σα

∆i
)

1
α−1 log( T

K ( σα

∆α
i

)
1

α−1 )
)

✓ b

O
(
σK1−1/αT 1/α

)
✓

APE2

(Lee et al., 2020)
✗ ✓ Only Stoc.

O
(
eσ +

∑
i6=i∗(

1
∆i

)
1

α−1 (T∆
α

α−1

i logK)
α

(α−1) log K

)
✗

Õ
(
exp(σ

1/α)K1−1/αT
1/α
)

✗

HTINF

(Huang et al., 2022)
✗ ✗

Stoc. O
(∑

i6=i∗(
σα

∆i
)

1
α−1 logT

)
✓

Adv. O
(
σK1−1/αT

1/α
)

✓

OptHTINF

(Huang et al., 2022)
✓ ✓

Stoc. O
(∑

i6=i∗(
σ2α

∆3−α
i

)
1

α−1 logT
)

✗

Adv. O
(
σαK

α−1
2 T

3−α
2

)
✗

AdaTINF

(Huang et al., 2022)
✓ ✓ Only Adv. O

(
σK1−1/αT

1/α
)

✓

AdaR-UCB

(Genalti et al., 2024)
✓ ✓ Only Stoc.

O
(∑

i6=i∗(
σα

∆i
)

1
α−1 logT

)
✓

Õ
(
σK1−1/αT

1/α
)

✓

uniINF

(Ours)
✓ ✓

Stoc. O
(
K( σα

∆min
)

1
α−1 logT · log σα

∆min

)
✓ c

Adv. Õ
(
σK1−1/αT 1/α

)
✓

a
α-Free? and σ-Free? denotes whether the algorithm is parameter-free w.r.t. α and σ, respectively. Env. includes

the environments that the algorithm can work; if one algorithm can work in both stochastic and adversarial environments,
then we mark this column by green. Regret describes the algorithmic guarantees, usually (if applicable) instance-
dependent ones above instance-independent ones. Opt? means whether the algorithm matches the instance-dependent
lower bound by Bubeck et al. (2013) up to constant factors, or the instance-independent lower bound up to logarithmic

factors.
bUp to log(σα) and log(1/∆α

i
) factors.

cUp to log(σα) and log(1/∆min) factors when all ∆i’s are similar to the dominant sub-optimal gap ∆min.

log-barrier analysis in short; see Section 4.1), an auto-balancing learning rate scheduling scheme (see
Section 4.2), and an adaptive skipping-clipping loss tuning technique (see Section 4.3).

• To derive the desired BoBW property, we develop novel analytical techniques as well. These include
a refined approach to control the Bregman divergence term via calculating partial derivatives and
invoking the intermediate value theorem (see Section 5.2) and a stopping-time analysis for achieving
O(log T ) regret in stochastic environments (see Section 5.4).

2 Related Work

Heavy-Tailed Multi-Armed Bandits. HTMABs were introduced by Bubeck et al. (2013), who
gave both instance-dependent and instance-independent lower and upper bounds under stochastic as-
sumptions. Various efforts have been devoted in this area since then. To exemplify, Wei and Srivastava
(2020) removed a sub-optimal (logT )1−1/α factor in the instance-independent upper bound; Yu et al.
(2018) developed a pure exploration algorithm for HTMABs; Medina and Yang (2016), Kang and Kim
(2023), and Xue et al. (2024) considered the linear HTMAB problem; and Dorn et al. (2024) specifi-
cally investigated the case where the heavy-tailed reward distributions are presumed to be symmetric.
Nevertheless, all these works focused on stochastic environments and required the prior knowledge
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of heavy-tail parameters (α, σ). In contrast, this paper focuses on both-of-both-worlds algorithms in
parameter-free HTMABs, which means i) the loss distributions can possibly be non-stationary, and ii)
the true heavy-tail parameters (α, σ) remain unknown.

Best-of-Both-Worlds Algorithms. Bubeck and Slivkins (2012) pioneered the study of Best-of-
Both-Worlds bandit algorithms, and was followed by various improvements including EXP3-based ap-
proaches (Seldin and Slivkins, 2014; Seldin and Lugosi, 2017), FTPL-based approaches (Honda et al.,
2023; Lee et al., 2024), and FTRL-based approaches (Wei and Luo, 2018; Zimmert and Seldin, 2019;
Jin et al., 2023). When the loss distribution can be heavy-tailed, Huang et al. (2022) gave an algorithm
HTINF that achieves best-of-both-worlds property under the known-(α, σ) assumption. Unfortunately,
without access to these true parameters, their alternative algorithm OptHTINF failed to achieve near-
optimal regret guarantees in either adversarial or stochastic environments.

Parameter-Free HTMABs. Another line of research aimed at getting rid of the prior knowledge
of α or σ, which we call Parameter-Free HTMABs. Along this line, Kagrecha et al. (2019) presented
the GSR method to identify the optimal arm in HTMAB without any prior knowledge. In terms
of regret minimization, Lee et al. (2020) and Lee and Lim (2022) considered the case when σ is un-
known. Genalti et al. (2024) were the first to achieve the parameter-free property while maintaining
near-optimal regret. However, all these algorithms fail in adversarial environments – not to mention the
best-of-both-worlds property which requires optimality in both stochastic and adversarial environments.

3 Preliminaries: Heavy-Tailed Multi-Armed Bandits

Notations. For an integer n ≥ 1, [n] denotes the set {1, 2, . . . , n}. For a finite set X , ∆(X ) denotes
the set of probability distributions over X , often also referred to as the simplex over X . We also use
∆[K] := ∆([K]) to denote the simplex over [K]. We use O to hide all constant factors, and use Õ to
additionally suppress all logarithmic factors. We usually use bold letters x to denote a vector, while
xi denotes an entry of the vector. Unless mentioned explicitly, log(x) denotes the natural logarithm
of x. Throughout the text, we will use {Ft}Tt=0 to denote the natural filtration, i.e., Ft represents the
σ-algebra generated by all random observations made during the first t time-slots.

Multi-Armed Bandits (MAB) is an interactive game between a player and an environment that lasts
for a finite number of T > 0 rounds. In each round t ∈ [T ], the player can choose an action from
K > 0 arms, denoted by it ∈ [K]. Meanwhile, a K-dimensional loss vector ℓt ∈ R

K is generated by the
environment from distribution νt, simultaneously without observing it. The player then suffers a loss
of ℓt,it and observe this loss (but not the whole loss vector ℓt). The player’s objective is to minimize
the expected total loss, or equivalently, minimize the following (pseudo-)regret:

RT := max
i∈[K]

E

[
T∑

t=1

ℓt,it −
T∑

t=1

ℓt,i

]
, (1)

where the expectation is taken w.r.t. the randomness when the player decides the action it and the

environment generates the loss ℓt. We use i∗ = argminiE
[∑T

t=1 ℓt,i

]
to denote the optimal arm.

In Heavy-Tailed MABs (HTMAB), for every t ∈ [T ] and i ∈ [K], the loss is independently sampled
from some heavy-tailed distribution νt,i in the sense that Eℓ∼νt,i [|ℓ|α] ≤ σα, where α ∈ (1, 2] and σ ≥ 0
are some pre-determined but unknown constants. A Best-of-Both-Worlds (BoBW) algorithm is one
that behaves well in both stochastic and adversarial environments (Bubeck and Slivkins, 2012), where
stochastic environments are those with time-homogeneous {νt}t∈[T ] (i.e., νt,i = ν1,i for every t ∈ [T ]
and i ∈ [K]) and adversarial environments are those where νt,i’s can depend on both t and i. However,
we do not allow the loss distributions to depend on the player’s previous actions.3

3Called oblivious adversary model (Bubeck and Slivkins, 2012; Wei and Luo, 2018; Zimmert and Seldin, 2019).
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Before concluding this section, we make the following essential assumption. As shown in (Genalti et al.,
2024, Theorems 2 & 3), without Assumption 1, there does not exist HTMAB algorithms that can match
the worst-case regret guarantees (Bubeck et al., 2013) without knowing either α or σ.

Assumption 1 (Truncated Non-Negative Loss (Huang et al., 2022, Assumption 3.6)). There exits an
optimal arm i∗ ∈ [K] such that ℓt,i∗ is truncated non-negative for all t ∈ [T ], where a random variable
X is called truncated non-negative if E[X · 1[|X | > M ]] ≥ 0 for any M ≥ 0.

Additionally, we make the following assumption for stochastic cases. Assumption 2 is common
for algorithms utilizing self-bounding analyses, especially those with BoBW properties (Gaillard et al.,
2014; Luo and Schapire, 2015; Wei and Luo, 2018; Zimmert and Seldin, 2019; Ito et al., 2022).

Assumption 2 (Unique Best Arm). In stochastic setups, if we denote the mean of distribution ν1,i as
µi := Eℓ∼ν1,i [ℓ] for all i ∈ [K], then there exists a unique best arm i∗ ∈ [K] such that ∆i := µi−µi∗ > 0
for all i 6= i∗. That is, the minimum gap ∆min := mini6=i∗ ∆i is positive.

4 The BoBW HTMAB Algorithm uniINF

In this section, we introduce our novel algorithm uniINF (Algorithm 1) for parameter-free HTMABs
achieving BoBW. To tackle the adversarial environment, we adopt the famous Follow-the-Regularized-
Leader (FTRL) framework instead the statistics-based approach. Moreover, we utilize the log-barrier
regularizer to derive the logarithmic regret bound in stochastic setting. In the rest of this section,
we introduce the main novel components in uniINF, including the refined log-barrier analysis (see
Section 4.1), the auto-balancing learning rate scheduling scheme (see Section 4.2), and the adaptive
skipping-clipping loss tuning technique (see Section 4.3).

4.1 Refined Log-Barrier Analysis

We adopt the log-barrier regularizer Ψt(x) := −St

∑K
i=1 log xi in Eq. (2) where S−1

t is the learning rate
in round t. While log-barrier regularizers were commonly used in the literature for data-adaptive bounds
such as small-loss bounds (Foster et al., 2016), path-length bounds (Wei and Luo, 2018), and second-
order bounds (Ito, 2021), this paper introduces novel analysis illustrating that log-barrier regularizers
also provide environment-adaptivity for both stochastic and adversarial settings.

Precisely, it is known that log-barrier applied to a loss sequence {ct}Tt=1 ensures
∑T

t=1〈xt−y, ct〉 .∑T
t=1((St+1 − St)K logT + Divt) where Divt ≤ S−1

t

∑K
i=1 x

2
t,ic

2
t,i for non-negative ct’s (Foster et al.,

2016, Lemma 16) and Divt ≤ S−1
t

∑K
i=1 xt,ic

2
t,i for general ct’s (Dai et al., 2023, Lemma 3.1). In

comparison, our Lemmas 4 and 5 focus on the case where St is adequately large compared to ‖ct‖∞
and give a refined version of Divt ≤ S−1

t

∑K
i=1 x

2
t,i(1− xt,i)

2c2t,i, which means

T∑

t=1

〈xt − y, ct〉 .
T∑

t=1

(St+1 − St)K logT +

T∑

t=1

S−1
t

K∑

i=1

x2
t,i(1− xt,i)

2c2t,i. (5)

The extra (1 − xt,i)
2 terms are essential to exclude the optimal arm i∗ ∈ [K] — a nice property

that leads to best-of-both-worlds guarantees (Zimmert and Seldin, 2019; Dann et al., 2023a). To give
more technical details on why we need this (1−xt,i)

2, in Section 5.1, we will decompose the regret into

skipping error
∑T

t=1(ℓt,it − ℓskip
t,it

)1[it 6= i∗] and main regret which is roughly
∑T

t=1〈xt − y, ℓskip
t 〉. The

skipping errors already include the indicator 1[it 6= i∗], so the exclusion of i∗ is automatic. However, for
the main regret, we must manually introduce some (1−xt,i) to exclude i∗ — which means the previous
bounds mentioned above do not apply, while our novel Eq. (5) is instead helpful.
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Algorithm 1 uniINF: the universal INF-type algorithm for Parameter-Free HTMAB

1: Initialize the learning rate S1 ← 4.
2: for t = 1, 2, . . . , T do
3: Apply Follow-the-Regularized-Leader (FTRL) to calculate the action xt ∈ ∆[K] with the log-

barrier regularizer Ψt defined in Eq. (2): ⊲ Refined log-barrier analysis; see
Section 4.1.

xt ← argmin
x∈∆[K]

(
t−1∑

s=1

〈
ℓ̃s,x

〉
+Ψt(x)

)
, Ψt(x) := −St

K∑

i=1

log xi (2)

4: Sample action it ∼ xt. Play it and observe feedback ℓt,it .
5: for i = 1, 2, . . . ,K do ⊲ Adaptive skipping-clipping loss tuning; see Section 4.3. Note that only

ℓskip
t,it

and ℓclipt,it
(but not the whole ℓ

skip
t and ℓ

clip
t vectors) are accessible to the player.

6: Calculate the action-dependent skipping threshold for arm i and round t

Ct,i :=
St

4(1− xt,i)
, (3)

and define a skipped version and a clipped version of the actual loss ℓt,i

ℓskip
t,i := Skip(ℓt,i, Ct,i) :=

{
ℓt,i if |ℓt,i| < Ct,i

0 otherwise
,

ℓclipt,i := Clip(ℓt,i, Ct,i) :=






Ct,i if ℓt,i ≥ Ct,i

−Ct,i if ℓt,i ≤ −Ct,i

ℓt,i otherwise

.

7: Calculate the importance sampling estimate of ℓskip
t , namely ℓ̃t, where

ℓ̃t,i =
ℓskip
t,i

xt,i
· 1[i = it], ∀i ∈ [K].

8: Update the learning rate St+1 as ⊲ Auto-balancing learning rates; see Section 4.2.

S2
t+1 = S2

t + (ℓclipt,it
)2 · (1− xt,it)

2 · (K logT )−1. (4)

4.2 Auto-Balancing Learning Rate Scheduling Scheme

The design of the learning rate St in our algorithm Algorithm 1 is specified in Eq. (4) as S2
t+1 =

S2
t + (ℓclipt,it

)2 · (1 − xt,it)
2 · (K logT )−1. The idea is to balance a Bregman divergence term Divt and

a Ψ-shifting term Shiftt that arise in our regret analysis (roughly corresponding to the terms on the
RHS of Eq. (5)). They allow the following upper bounds as we will include as Lemmas 5 and 9:

Divt ≤ O
(
S−1
t

(
ℓclipt,it

)2
(1− xt,it)

2

)

︸ ︷︷ ︸
Bregman Divergence

, Shiftt ≤ O ((St+1 − St) ·K logT )︸ ︷︷ ︸
Ψ-Shifting

. (6)

Thus, to make Divt roughly the same as Shiftt, it suffices to ensure (St+1−St)St ≈ (ℓclipt,it
)2(1−xt,it)

2 ·
(K logT )−1. Our definition of St in Eq. (4) follows since (St+1 − St)St ≈ S2

t+1 − S2
t .
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4.3 Adaptive Skipping-Clipping Loss Tuning Technique

For heavy-tailed losses, a unique challenge is that E[ℓ2t,it ], the squared incurred loss appearing in the
Bregman divergence term (as shown in Eq. (6)), does not allow a straightforward upper bound as we
only have E[|ℓt,it |α] ≤ σα. A previous workaround is deploying a skipping technique that replaces large
loss with 0 (Huang et al., 2022). This technique forbids a sudden increase in the divergence term and
thus eases the balance between Divt and Shiftt. However, this skipping is not a free lunch: if we
skipped too much, the increase of St will be slow, which makes the skipping threshold Ct,i grow slowly
as well — therefore, we end up skipping even more and incurring tremendous skipping error ! This
eventually stops us from establishing instance-dependent guarantees in stochastic setups.

To address this limitation, we develop an adaptive skipping-clipping technique. The idea is to ensure
that every loss will influence the learning process — imagine that the green ℓclipt,it

in Eq. (4) is replaced

by ℓskip
t,it

, then St will not change if the current ℓt,it is large, which risks the algorithm from doing
nothing if happening repeatedly. Instead, our clipping technique induces an adequate reaction upon
observing a large loss, which both prevents the learning rate St from having a drastic change and
ensures the growth of St is not too slow. Specifically, from Eq. (4), if we skip the loss ℓt,it , we must
have St+1 = Θ(1 + (K logT )−1)St. This is crucial for our stopping-time analysis in Section 5.2.

While clipping is used to tune St, we use the skipped loss ℓ
skip
t (more specifically, its importance-

weighted version ℓ̃t) to decide the action xt in the FTRL update Eq. (2). Utilizing the truncated
non-negativity assumption (Assumption 1), we can exclude one arm when controlling the skipping
error, as already seen in Eq. (5). We shall present more details in Section 5.4.

5 Main Results

The main guarantee of our uniINF (Algorithm 1) is presented in Theorem 3 below, which states that
uniINF achieves both optimal minimax regret for adversarial cases (up to logarithmic factors) and
near-optimal instance-dependent regret for stochastic cases.

Theorem 3 (Main Guarantee). Under the adversarial environments, uniINF (Algorithm 1) achieves

RT = Õ
(
σK1−1/αT

1/α
)
.

Moreover, for the stochastic environments, uniINF (Algorithm 1) guarantees

RT = O
(
K

(
σα

∆min

) 1
α−1

logT · log σα

∆min

)
.

The formal proof of this theorem is provided in Appendix D. As shown in Table 1, our uniINF

automatically achieves nearly optimal instance-dependent and instance-independent regret guarantees
in stochastic and adversarial environments, respectively. Specifically, under stochastic settings, uniINF

achieves the regret upper bound O
(
K (σ

α
/∆min)

1/α−1
logT · log σα

/∆min

)
. Compared to the instance-

dependent lower bound Ω
(∑

i6=i∗(
σα
/∆i)

1/α−1 logT
)

given by Bubeck et al. (2013), our result matches

the lower bound up to logarithmic factors log σα
/∆min which is independent of T when all ∆i’s are

similar to the dominant sub-optimal gap ∆min. For adversarial environments, our algorithm achieves
an Õ

(
σK1−1/αT 1/α

)
regret, which matches the instance-independent lower bound Ω

(
σK1−1/αT 1/α

)

given in Bubeck et al. (2013) up to logarithmic terms. Therefore, the regret guarantees of uniINF are
nearly-optimal in both stochastic and adversarial environments .

5.1 Regret Decomposition

In Sections 5.1 to 5.4, we sketch the proof of our BoBW result in Theorem 3. To begin with, we
decompose the regret RT into a few terms and handle each of them separately. Denoting y ∈ R

K as

7



the one-hot vector on the optimal action i∗ ∈ [K], i.e., yi := 1[i = i∗], we know from Eq. (1) that

RT = E

[
T∑

t=1

〈xt − y, ℓt〉
]
.

As the log-barrier regularizer Ψt is prohibitively large when close to the boundary of ∆[K], we instead

consider the adjusted benchmark ỹ defined as ỹi :=

{
1
T i 6= i∗

1− K−1
T i = i∗

and rewrite RT as

RT = E

[
T∑

t=1

〈ỹ − y, ℓskip
t 〉

]

︸ ︷︷ ︸
I. Benchmark Calibration Error

+E

[
T∑

t=1

〈xt − ỹ, ℓskip
t 〉

]

︸ ︷︷ ︸
II. Main Regret

+E

[
T∑

t=1

〈xt − y, ℓt − ℓ
skip
t 〉

]

︸ ︷︷ ︸
III. Skipping Error

. (7)

We now go over each term one by one.
Term I. Benchmark Calibration Error. As in a typical log-barrier analysis (Wei and Luo, 2018;

Ito, 2021), the Benchmark Calibration Error is not the dominant term. This is because

E

[
T∑

t=1

〈ỹ − y, ℓskip
t 〉

]
≤

T∑

t=1

K − 1

T
E[|ℓskip

t,it
|] ≤

T∑

t=1

K − 1

T
E[|ℓt,it |] ≤ σK,

which is independent from T . Therefore, the key is analyzing the other two terms.
Term II. Main Regret. By FTRL regret decomposition (see Lemma 29 in the appendix; it is an

extension of the classical FTRL bounds (Lattimore and Szepesvári, 2020, Theorem 28.5)), we have

Main Regret = E

[
T∑

t=1

〈xt − ỹ, ℓskip
t 〉

]
= E

[
T∑

t=1

〈xt − ỹ, ℓ̃t〉
]

≤
T∑

t=1

E[DΨt
(xt, zt)] +

T−1∑

t=0

E [(Ψt+1(ỹ)−Ψt(ỹ))− (Ψt+1(xt+1)−Ψt(xt+1))] ,

where DΨt
(y,x) = Ψt(y) − Ψt(x) − 〈∇Ψt(x),y − x〉 is the Bregman divergence induced by the t-th

regularizer Ψt, and zt denotes the posterior optimal estimation in episode t, namely

zt := argmin
z∈∆[K]

(
t∑

s=1

〈ℓ̃s, z〉+Ψt(z)

)
. (8)

For simplicity, we use the abbreviation Divt := DΨt
(xt, zt) for the Bregman divergence between

xt and zt under regularizer Ψt, and let Shiftt := [(Ψt+1(ỹ)−Ψt(ỹ))− (Ψt+1(xt+1)− Ψt(xt+1))] be
the Ψ-shifting term. Then, we can reduce the analysis of main regret to bounding the sum of Bregman
divergence term E[Divt] and Ψ-shifting term E[Shiftt].

Term III. Skipping Error. To control the skipping error, we define SkipErrt := ℓt,it − ℓskip
t,it

=
ℓt,it1[|ℓt,it | ≥ Ct,it ] as the loss incurred by the skipping operation at episode t. Then we have

〈xt − y, ℓt − ℓ
skip
t 〉 =

∑

i∈[K]

(xt,i − yi) · (ℓt,i − ℓskip
t,i )

≤
∑

i6=i∗

xt,i ·
∣∣∣ℓt,i − ℓskip

t,i

∣∣∣+ (xt,i∗ − 1) ·
(
ℓt,i∗ − ℓskip

t,i∗

)

= E [|SkipErrt| · 1[it 6= i∗] | Ft−1] + (xt,i∗ − 1) ·
(
ℓt,i∗ − ℓskip

t,i∗

)
.

Notice that the factor (xt,i∗ − 1) in the second term is negative and Ft−1-measurable, and we have

E

[
ℓt,i∗ − ℓskip

t,i∗

∣∣∣Ft−1

]
= E [1[|ℓt,i∗ | ≥ Ct,i∗ ] · ℓt,i∗ ] ≥ 0,

8



where the inequality is due to the truncated non-negative assumption (Assumption 1) of the optimal

arm i∗. Therefore, we have E[(xt,i∗ − 1) · (ℓt,i∗ − ℓskip
t,i∗ ) | Ft−1] ≤ 0 and thus

E[〈xt − y, ℓt − ℓ
skip
t 〉 | Ft−1] ≤ E[|SkipErrt| · 1[it 6= i∗] | Ft−1], (9)

which gives an approach to control the skipping error by the sum of skipping losses SkipErrt’s where
we pick a sub-optimal arm it 6= i∗. Formally, we give the following inequality:

Skipping Error ≤ E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
.

To summarize, the regret RT decomposes into the sum of Bregman divergence terms E[Divt], the
Ψ-shifting terms E[Shiftt], and the sub-optimal skipping losses E[|SkipErrt| · 1[it 6= i∗]], namely

RT ≤ E

[
T∑

t=1

Divt

]

︸ ︷︷ ︸
Bregman Divergence Terms

+E

[
T−1∑

t=0

Shiftt

]

︸ ︷︷ ︸
Ψ-Shifting Terms

+E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]

︸ ︷︷ ︸
Sub-Optimal Skipping Losses

+σK. (10)

In Sections 5.2 to 5.4, we analyze these three key items and introduce our novel analytical techniques
for both adversarial and stochastic cases. Specifically, we bound the Bregman divergence terms in
Section 5.2 (all formal proofs in Appendix A), the Ψ-shifting terms in Section 5.3 (all formal proofs in
Appendix B), and the skipping error terms in Section 5.4 (all formal proofs in Appendix C). Afterwards,
to get our Theorem 3, putting Theorems 7, 10, and 13 together gives the adversarial guarantee, while
the stochastic guarantee follows from a combination of Theorems 8, 11, and 14.

5.2 Analyzing Bregman Divergence Terms

From the log-barrier regularizer defined in Eq. (2), we can explicitly write out Divt as

Divt = DΨt
(xt, zt) = St

∑

i∈[K]

(
− log

xt,i

zt,i
+

xt,i

zt,i
− 1

)
.

To simplify notations, we define wt,i :=
xt,i

zt,i
− 1, which gives Divt = St

∑K
i=1(wt,i − log(wt,i + 1)).

Therefore, one natural idea is to utilize the inequality x− log(x + 1) ≤ x2 for x ∈ [−1/2, 1/2]. To do so,
we need to conclude −1/2 ≤ wt,i ≤ 1/2. We develop a novel technical tool to depict zt and provide an
important technical lemma which says zt is multiplicatively close to xt:

Lemma 4 (zt is Multiplicatively Close to xt).
1
2xt,i ≤ zt,i ≤ 2xt,i for every t ∈ [T ] and i ∈ [K].

Lemma 4 implies wt,i ∈ [−1/2, 1/2]. Hence Divt = St

∑K
t=1(wt,i − log(wt,i + 1)) ≤ St

∑K
t=1 w

2
t,i.

Conditioning on the natural filtration Ft−1, wt,i is fully determined by feedback ℓ̃t in episode t, which

allows us to give a precise depiction of wt,i via calculating the partial derivative ∂wt,i/∂ℓ̃t,j and invoking
the intermediate value theorem. The detailed procedure is included as Lemma 16 in the appendix, which
further results in the following lemma on the Bregman divergence term Divt.

Lemma 5 (Upper Bound of Divt). For every t ∈ [T ], we can bound Divt as

Divt = O
(
S−1
t (ℓskipt,it

)2(1− xt,it)
2
)
,

t∑

τ=1

Divτ = O (St+1 ·K logT ) .

Compared to previous bounds on Divt, Lemma 5 contains an (1 − xt,it)
2 that is crucial for our

instance-dependent bound and serves as a main technical contribution, as we sketched in Section 4.1.
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Adversarial Cases. By definition of St in Eq. (4), we can bound ST+1 as in the following lemma.

Lemma 6 (Upper Bound for ST+1). The expectation of ST+1 can be bounded by

E[ST+1] ≤ 2 · σ(K logT )−
1/αT

1/α. (11)

Combining this upper-bound on E[ST+1] with Lemma 5, we can control the expected sum of Bregman

divergence terms E[
∑T

t=1 Divt] in adversarial environments, as stated in the following theorem.

Theorem 7 (Adversarial Bounds for Bregman Divergence Terms). In adversarial environments, the
sum of Bregman divergence terms can be bounded by

E

[
T∑

t=1

Divt

]
= Õ

(
σK1−1/αT

1/α
)
.

Stochastic Cases. For O(log T ) bounds, we opt for the first statement of Lemma 5. By definition of

ℓskip
t,it

, we immediately have |ℓskip
t,it
| ≤ Ct,it = O(St(1 − xt,it)

−1). Further using E[|ℓt,it |α] ≤ σα, we have

E[Divt | Ft−1] = O(S1−α
t σα(1− xt,i∗)) (formalized as Lemma 20 in the appendix).

We can now perform a stopping-time argument for the sum of Bregman divergence terms in stochastic
cases. Briefly, we pick a fixed constant M > 0. The expected sum of Divt’s on those {t | St ≥ M} is
then within O(M1−α ·T ) according to Lemma 5. On the other hand, we claim that the sum of Divt’s on
those {t | St < M} can also be well controlled because E[Divt | Ft−1] = O(E[S1−α

t σα(1−xt,i∗) | Ft−1]).
The detailed analysis is presented in Appendix A.6, and we summarize it as follows. Therefore, the sum
of Bregman divergences in stochastic environments is also well-controlled.

Theorem 8 (Stochastic Bounds for Bregman Divergence Terms). In stochastic settings, the sum of
Bregman divergence terms can be bounded by

E

[
T∑

t=1

Divt

]
= O

(
Kσ

α
α−1∆

− 1
α−1

min logT +
RT

4

)
.

5.3 Analyzing Ψ-Shifting Terms

Since our choice of {St}t∈[T ] is non-decreasing, the Ψ-shifting term Ψt+1(x)−Ψt(x) ≥ 0 trivially holds

for any x ∈ ∆[K]. We get the following lemma by algebraic manipulations.

Lemma 9 (Upper Bound of Shiftt). For every t ≥ 0, we can bound Shiftt as

Shiftt = O
(
S−1
t (ℓclipt,it

)2(1− xt,it)
2
)
,

t∑

τ=0

Shiftτ = O (St+1 ·K logT ) .

Similarly, Lemma 9 also contains a useful (1−xt,it)
2 term — in fact, the two bounds in Lemma 9 are

extremely similar to those in Lemma 5 and thus allow analogous analyses. This is actually an expected
phenomenon, thanks to our auto-balancing learning rates introduced in Section 4.2.

Adversarial Cases. Again, we utilize the E[ST+1] bound in Lemma 6 and get the following theorem.

Theorem 10 (Adversarial Bounds for Ψ-Shifting Terms). In adversarial environments, the expectation
of the sum of Ψ-shifting terms can be bounded by

E

[
T−1∑

t=0

Shiftt

]
≤ E[ST+1 · (K logT )] = Õ

(
σK1−1/αT

1/α
)
.
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Stochastic Cases. Still similar to Divt’s, we condition on Ft−1 and utilize |ℓclipt,it
| ≤ Ct,it to get

E [Shiftt | Ft−1] = O(S1−α
t σα(1−xt,i∗)) (formalized as Lemma 24 in the appendix). Thus, for stochas-

tic environments, a stopping-time argument similar to that of Divt yields Theorem 11.

Theorem 11 (Stochastic Bounds for Ψ-shifting Terms). In stochastic environments, the sum of Ψ-
shifting terms can be bounded by

E

[
T−1∑

t=0

Shiftt

]
= O

(
Kσ

α
α−1∆

− 1
α−1

min logT +
RT

4

)
.

5.4 Analyzing Sub-Optimal Skipping Losses

This section controls the sub-optimal skipping losses when we pick a sub-optimal arm it 6= i∗, i.e.,

T∑

t=1

|SkipErrt · 1[it 6= i∗]| =
T∑

t=1

|ℓt,it − ℓskip
t,it
| · 1[it 6= i∗] =

T∑

t=1

|ℓt,it | · 1[|ℓt,it | ≥ Ct,it ] · 1[it 6= i∗].

For skipping errors, we need a more dedicated stopping-time analysis in both adversarial and stochas-
tic cases. Different from previous sections, it is now non-trivial to bound the sum of SkipErrt’s on
those {t | St < M} where M is the stopping-time threshold. However, a key observation is that
whenever we encounter a non-zero SkipErrt, St+1 will be Ω(1)-times larger than St, thanks to the
adaptive skipping-clipping technique. Thus the number of non-zero SkipErrt’s before St reaching M
is small. Equipped with this observation, we derive the following lemma, whose formal proof is included
in Appendix C.1.

Lemma 12 (Stopping-Time Argument for Skipping Losses). Given a stopping-time threshold M , the
total skipping loss on those t’s with it 6= i∗ is bounded by

E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
≤M


 σα

Mα
E

[
T∑

t=1

1[it 6= i∗]

]
+ 2 · logM

log
(
1 + 1

16K log T

) + 1


 .

Equipped with this novel stopping-time analysis, it only remains to pick a proper threshold M
for Lemma 12. It turns out that for adversarial and stochastic cases, we have to pick different M ’s.
Specifically, we achieve the following two theorems, whose proofs are in Appendices C.2 and C.3.

Theorem 13 (Adversarial Bounds for Skipping Losses). By setting adversarial stopping-time threshold
Madv := σ(K logT )−1/αT

1/α, we have

E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
= Õ

(
σK1−1/αT

1/α
)
.

Theorem 14 (Stochastic Bounds for Skipping Losses). By setting stochastic stopping-time threshold

M sto := 4
1

α−1 σ
α

α−1∆
− 1

α−1

min , we have

E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
= O

(
K logT · σ α

α−1∆
− 1

α−1

min · log(σα/∆min) +
RT

4

)
.

6 Conclusion

This paper designs the first algorithm for Parameter-Free HTMABs that enjoys the Best-of-Both-
Worlds property. Specifically, our algorithm, uniINF, simultaneously achieves near-optimal instance-
independent and instance-dependent bounds in adversarial and stochastic environments, respectively.
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uniINF incorporates several innovative algorithmic components, such as i) refined log-barrier analysis,
ii) auto-balancing learning rates, and iii) adaptive skipping-clipping loss tuning. Analytically, we also
introduce meticulous techniques including iv) analyzing Bregman divergence via partial derivatives and
intermediate value theorem and v) stopping-time analysis for logarithmic regret. We expect many of
these techniques to be of independent interest. In terms of limitations, uniINF does suffer from some
extra logarithmic factors; it’s dependency on the gaps {∆−1

i }i6=i∗ is also improvable when some of the
gaps are much smaller than the other. We leave these for future investigation.
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A Bregman Divergence Terms: Omitted Proofs in Section 5.2

In this section, we present the omitted proofs in Section 5.2, the analyses for the Bregman divergence
term Divt = DΨt

(xt, zt) = Ψt(xt)−Ψt(zt)− 〈∇Ψt(zt),xt − zt〉 where xt, zt are defined as

xt := argmin
x∈∆[K]

〈Lt−1,x〉+Ψt(x),

zt := argmin
z∈∆[K]

〈Lt, z〉 +Ψt(z),

and Lt is defined as the cumulative loss

Lt =
t∑

s=1

ℓ̃s, ℓ̃s,i =
ℓskip
t,i

xt,i
· 1[i = it].

By KKT conditions, there exist two unique multipliers Zt and Z̃t such that

xt,i =
St

Lt−1,i − Zt
, zt,i =

St

Lt,i − Z̃t

, ∀i ∈ [K].

We highlight that Zt is fixed conditioning on Ft−1, while Z̃t is fully determined by ℓ̃t.

A.1 zt,i is Multiplicatively Close to xt,i: Proof of Lemma 4

Lemma 4 investigates the relationship between xt,i and zt,i. By previous discussion, the key of the proof

is carefully studied the multipliers Zt and Z̃t.

Lemma 15 (Restatement of Lemma 4). For every t ∈ [T ] and i ∈ [K], we have

1

2
xt,i ≤ zt,i ≤ 2xt,i.
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Proof. Positive Loss. Below we first consider ℓ̃t,it > 0, the other case ℓ̃t,it < 0 can be verified

similarly, and the ℓ̃t,it = 0 case is trivial. We prove this lemma for left and right sides, respectively.
The left side 1

2xt,i ≤ zt,i: According to the KKT conditions, given St and Lt−1 (Lt), the goal of

computing xt (zt) can be reduced to find a scalar multiplier Zt (Z̃t), such that we have

K∑

i=1

xt,i(Zt) = 1

and

K∑

i=1

zt,i(Z̃t) = 1

where

xt,i(λ) =
St

Lt−1,i − λ
, zt,i(λ) =

St

Lt,i − λ
=

St

Lt−1,i + ℓ̃t,i − λ
. (12)

Note that each zt,i(λ) is an increasing function of λ on (−∞, Lt,i]. Since ℓ̃t,it > 0, it is easy to see

that zt,it(Zt) < xt,it . Thus in order to satisfy the sum-to-one constraint, we must have Z̃t > Zt and

Z̃t − Zt < ℓ̃t,it . Moreover, we have zt,it < xt,it and zt,i > xt,i for all i 6= it. Therefore, we only need to
prove that zt,it ≥ 1

2xt,it . Thanks to the monotonicity of zt,i(λ), it suffices to find a multiplier Zt such
that

zt,it(Zt) ≥
xt,it

2
, (13)

∑

i∈[K]

zt,i(Zt) ≤ 1. (14)

With the above two conditions hold, we can conclude that Z̃t ≥ Zt, i.e., Zt is a lower-bound for the
actual multiplier Z̃t making zt ∈ ∆, and thus zt,it = zt,it(Z̃t) ≥ zt,it(Zt) ≥ xt,it

2 .

For our purpose, we will choose Zt as follows

Zt =

{
Zt if xt,it <

1
2 ,

the unique solution to zt,it(λ) =
xt,it

2 if xt,it ≥ 1
2 .

We will verify Eq. (13) and Eq. (14) for both cases. For the condition Eq. (13), when xt,it ≥ 1
2 ,

it automatically holds by definition of Zt. When xt,it < 1
2 , we have St = 4Ct,it · (1 − xt,it) ≥ 2ℓskip

t,it
.

Therefore,

St

Lt,it − Zt

=
St

Lt−1,it +
ℓskip

t,it

xt,it

− Zt

≥ St

Lt−1,it +
St

2xt,it

− Zt

=
St

(Lt−1,it − Zt) · (1 + St

2xt,it
(Lt−1,it−Zt)

)

= xt,it ·
(
1 +

1

2xt,it

· xt,it

)−1

=
2

3
xt,it

15



≥ 1

2
xt,it .

Thus, we have St

Lt,it
−Zt
≥ xt,it

2 holds regardless xt,it ≥ 1/2 or not.

Then, we verify the other statement Eq. (14). When xt,it <
1
2 , we have

∑

i∈[K]

zt,i(Zt) = zt,it(Zt) +
∑

i6=it

zt,i(Zt)

= zt,it(Zt) +
∑

i6=it

xt,i

< xt,it +
∑

i6=it

xt,i = 1.

For the other case xt,it ≥ 1
2 . It turns out that the definition of Zt, i.e., zt,it(Zt) =

xt,it

2 , solves to

Zt = −
2St

xt,it

+ Lt−1,it +
ℓskip
t,it

xt,it

≤ Zt −
St

xt,it

+
Ct,it

xt,it

≤ Zt −
St

xt,it

+
St

4x2
t,it

(1− xt,it)

= Zt +
St(1− 4xt,it(1− xt,it))

4x2
t,it

(1− xt,it)

= Zt +
St(2xt,it − 1)2

4x2
t,it

(1 − xt,it)

where the first inequality holds by the definition of xt,it in Eq. (12) and 0 < ℓskip
t,it
≤ Ct,it =

St

4(1−xt,it
) ≤

St

4xt,it
(1−xt,it

) . For all i 6= it, we then have

St

Lt,i − Zt

=
St

Lt−1,i − Zt

≤ St

Lt−1,i − Zt − St(2xt,it
−1)2

4x2
t,it

(1−xt,it
)

=
St

(Lt−1,i − Zt) ·
(
1− St(2xt,it

−1)2

(Lt−1,i−Zt)4x2
t,it

(1−xt,it
)

)

= xt,i ·
(
1− xt,i

(2xt,it − 1)2

4x2
t,it

(1 − xt,it)

)−1

Since we have xt,i ≤
∑

i6=it
xt,i = 1− xt,it , then

zt,i(Zt) =
St

Lt,i − Zt

≤ xt,i ·
(
1−

1− 4xt,it + 4x2
t,it

4x2
t,it

)−1

= xt,i ·
4x2

t,it

4xt,it − 1
. (15)

Therefore, we have

∑

i∈[K]

zt,i(Zt)
(a)

≤ 1

2
xt,it +

4x2
t,it

4xt,it − 1

∑

i6=it

xt,i

16



=
1

2
xt,it +

4x2
t,it

4xt,it − 1
(1− xt,it)

(b)

≤ 1

2
xt,it + 4x2

t,it(1 − xt,it)

(c)

≤ 1,

where step (a) is obtained by applying Eq. (15) to i 6= it and zt,it(Zt) = xt,it/2; step (b) is due to
xt,it ≥ 1/2; step (c) is due to the fact that x 7→ x/2+4x2(1−x) has a maximum value less than 1. Then,
we have already verified Eq. (14), which finishes the proof of zt,it ≥ xt,it/2.
The right side zt,i ≤ 2xt,i. We then show that zt,i ≤ 2xt,i holds for all i ∈ [K]. The main idea is
similar to what we have done in the argument for the left-side inequality, we will find some Zt under
which we can verify that

zt,i(Zt) ≤ 2xt,i ∀i 6= it, (16)
∑

i∈[K]

zt,i(Zt) ≥ 1. (17)

We can then claim that this Zt is indeed an upper-bound of the actual multiplier Z̃t.
Let j∗ = argmaxj 6=it xt,j , we just take Zt to be the unique solution to zt,j∗(λ) = 2xt,j∗ , which solves

to

Zt = Zt +
St

2xt,j∗
.

One can verify that

zt,j∗(Zt) =
St

(Lt−1,j∗ − Zt) ·
(
1− St

(Lt−1,j∗−Zt)·2xt,j∗

)

= xt,j∗

(
1− xt,j∗

2xt,j∗

)−1

= 2xt,j∗ .

For i ∈ [K] \ {it, j∗}, it is easy to see that

zt,i(Zt) =
St

Lt−1,i − Zt − St

2xt,j∗

=
St

(Lt−1,i − Zt) ·
(
1− St

2xt,j∗ (Lt−1,i−Zt)

)

= xt,i

(
1− xt,i

2xt,j∗

)−1

≤ 2xt,i.

Hence Eq. (16) holds. In order to verify Eq. (17), note that

ℓ̃t,it ≤
Ct,it

xt,it

≤ St

4xt,it(1 − xt,it)
.

When xt,it ≥ 1/2, we have

ℓ̃t,it ≤
St

4 · 12 ·
∑

j 6=it
xt,j

17



≤ St

2xt,j∗

= Zt − Zt.

Therefore, we have

zt,it(Zt) =
St

Lt,it − Zt

≥ St

Lt−1,it + Zt − Zt − Zt

= xt,it .

Therefore,

∑

i∈[K]

zt,i(Zt) = zt,it(Zt) +
∑

i6=it

zt,i(Zt) (18)

≥ zt,it(Zt) +
∑

i6=it

zt,i(Zt)

≥ xt,it +
∑

i6=it

xt,i = 1.

On the other hand, when xt,it < 1/2, we have

ℓ̃t,it ≤
St

4xt,it(1 − xt,it)
≤ St

4xt,it · 12
=

St

2xt,it

.

If xt,it ≥ xt,j∗ , we have ℓ̃t,it ≤ St/(2xt,j∗) = Zt−Zt. Then we can apply the same analysis as Eq. (18).
Hence the only remaining case is xt,it < 1/2 and xt,it < xt,j∗ , where we have

zt,j∗(Zt)− xt,j∗ = xt,j∗ > xt,it > xt,it − zt,it(Zt). (19)

Therefore, we have

∑

i∈[K]

zt,i(Zt)− 1 =
[
zt,j∗(Zt)− xt,j∗

]
+
[
zt,it(Zt)− xt,it

]
+
∑

i6=it,j∗

zt,i(Zt)− xt,i

>
∑

i6=it,j∗

zt,i(Zt)− xt,i

≥ 0

hence
∑

i∈[K] zt,i(Zt) > 1. In all, we show that
∑

i∈[K] zt,i(Zt) ≥ 1, and we are done.

Negative Loss. The proof of case ℓ̃t,i < 0 is very similar. In this case, we have zt,it(Zt) > xt,it ,

which shows that
∑

i∈[K] zt,i(Zt) > 1. Therefore, we have Z̃t < Zt, which implies zt,i < xt,i for i 6= it

and zt,it > xt,it . Therefore, we only need to verify that zt,it ≤ 2xt,it and zt,i ≥ 1
2xt,i for i 6= it. We

apply similar proof process as above statement.
For the first inequality, we just need to verify that there exists a multiplier Zt such that

zt,it(Zt) ≤ 2xt,it , (20)
∑

i∈[K]

zt,i(Zt) ≥ 1. (21)

We set Zt as the unique solution to zt,it(λ) = 2xt,it . Then we have

Zt = −
St

2xt,it

+ Lt−1,it + ℓ̃t,it

= − St

xt,it

+
St

2xt,it

+ Lt−1,it +
ℓskip
t,it

xt,it

18



≥ Zt +
St

2xt,it

− Ct,it

xt,it

= Zt +
St

2xt,it

− St

4xt,it(1− xt,it)

= Zt −
St(2xt,it − 1)

4xt,it(1− xt,it)

If xt,it ≤ 1/2, we have Zt ≥ Zt. Therefore,

∑

i∈[K]

zt,i(Zt) ≥ zt,it(Zt) +
∑

i6=it

zt,i(Zt) = 2xt,it +
∑

i6=it

xt,i ≥ 1.

For the other case, if xt,it > 1/2, we have for any i 6= it

zt,i(Zt) ≥
St

Lt−1,i − Zt +
St(2xt,it

−1)

4xt,it
(1−xt,it

)

= xt,i ·
(
1 + xt,i ·

2xt,it − 1

4xt,it(1− xt,it)

)−1

≥ xt,i ·
(
1 +

2xt,it − 1

4xt,it

)−1

= xt,i ·
4xt,it

6xt,it − 1
,

where the second inequality holds by 2xt,it − 1 > 0 and xt,i ≤ 1− xt,it . Therefore, we have

∑

i∈[K]

zt,i(Zt) ≥ 2xt,it +
∑

i6=it

xt,i ·
4xt,it

6xt,it − 1
= 2xt,it +

4xt,it(1− xt,it)

6xt,it − 1
≥ 1.

For the second inequality, we need to verify that there exists a multiplier Zt such that

zt,i(Zt) ≥
1

2
xt,i ∀i 6= it, (22)

∑

i∈[K]

zt,i(Zt) ≤ 1. (23)

Let j∗ = argmaxj 6=it xt,j . Then we set Zt as

Zt = Zt −
St

xt,j∗
.

Hence, we have for any i 6= it,

zt,i
(
Zt

)
=

St

(Lt−1,i − Zt) ·
(
1 + St

(Lt−1,i−Zt)xt,j∗

)

= xt,i ·
(
1 +

xt,i

xt,j∗

)−1

≥ xt,i ·
1

2
,

where the inequality holds by xt,j∗ > xt,i. Therefore, we have

zt,i(Zt) ≥
1

2
xt,i.
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Then we verity Eq. (23). Since we have Zt ≤ Zt, then zt,i(Zt) ≤ xt,i for any i 6= it. Thus we only need
to prove zt,it(Zt) ≤ xt,it . Notice that

zt,it(Zt) =
St

Lt−1,it − Zt + ℓ̃t,it +
St

xt,j∗

≤ St

Lt−1,it − Zt +
St

xt,j∗
− St

4xt,it
(1−xt,it

)

,

where the inequality is due to ℓ̃t,it = ℓskip
t,it

/xt,it ≥ −Ct,it/xt,it and the definition of Ct,it in Eq. (3). If
we have xt,it ≥ 1/2, then

St

xt,j∗
− St

4xt,it(1 − xt,it)
≥ St

xt,j∗
− St

2(1− xt,it)

=
St

xt,j∗
− St

2
∑

j 6=it
xt,j

≥ St

xt,j∗
− St

2xt,j∗

≥ 0.

Therefore, we have zt,it(Zt) ≤ xt,it , which implies that
∑

i∈[K] zt,i(Zt) ≤
∑

i∈[K] xt,i = 1. For the case

when xt,it < 1/2, we also have

St

xt,j∗
− St

4xt,it(1− xt,it)
≥ St

xt,j∗
− St

2xt,it

.

If xt,j∗ ≤ 2xt,it , we still have zt,it(Zt) ≤ xt,it . Otherwise, for xt,j∗ > 2xt,it , we can write

zt,it(Zt) =
St

Lt−1,it − Zt + ℓ̃t,it +
St

xt,j∗

≤ St

Lt−1,it − Zt +
St

xt,j∗
− St

4xt,it
(1−xt,it

)

= xt,it ·
(
1 +

xt,it

xt,j∗
− 1

4(1− xt,it)

)−1

Notice that here xt,it ∈ [0, 1/2], which implies that 1 +
xt,it

xt,j∗
− 1

4(1−xt,it
) ≥ 1/2. Therefore, we have

zt,it(Zt) ≤ 2xt,it ≤
1

2
xt,j∗ + xt,it .

Since zt,j∗(Zt) =
1
2xt,j∗ , we have

∑

i∈[K]

zt,i(Zt) ≤
∑

i∈[K]\{it,j∗}

xt,i +
1

2
xt,j∗ +

1

2
xt,j∗ + xt,it = 1.

In all, we conclude Eq. (23) and prove this lemma.

A.2 Calculating wt,i via Partial Derivatives

By inspecting the partial derivatives of the multiplier Z̃t with respect to the feedback vector ℓ̃t, we can
derive the following lemmas on wt,i.

Lemma 16. We have

wt,i = ℓ̃t,it ·
xt,i

St
·
(
1[i = it]−

ζ2t,it∑
k∈[K] ζ

2
t,k

)
,
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where

ζt := argmin
z∈∆

〈Lt−1 + λℓ̃t, z〉+Ψt(z).

Here λ is some constant ranged from (0, 1), implicitly determined by ℓ̃t.

Proof. Notice that conditioning on the time step before t− 1, zt,i only depends on ℓ̃t,i. Then we denote

Z̃ ′
t,i(θ) :=

∂Z̃t

∂ℓ̃t,i

∣∣∣∣∣
ℓ̃t=θei

,

where ei is the unit vector supported at the i-th coordinate, and θ is a scalar.
Notice that

∑

j∈[K]

zt,j =
∑

j∈[K]

St

Lt,j − Z̃t

= 1, (24)

Then partially derivate ℓ̃t,i on both sides of Eq. (24), we get

∑

j∈[K]

− St

(ℓt,j − Z̃t)2
· (1[j = i]− Z̃ ′

t,i) = −
z2t,i
St

+ Z̃skip
t,i

∑

j∈[K]

z2t,j
St

= 0,

which solves to

Z̃ ′
t,i =

z2t,i∑
j∈[K] z

2
t,j

.

Similarly, we denote

z′t,ij(θ) :=
∂zt,i

∂ℓ̃t,j

∣∣∣∣∣
ℓ̃t=θej

Then according to the chain rule, we have

z′t,ij =
z2t,i
St
·


z2t,j/



∑

k∈[K]

x2
t,k


 − 1[i = j]


 .

We denote

w′
t,ij(θ) :=

∂wt,i

∂ℓ̃t,j

∣∣∣∣∣
ℓ̃t=θej

.

Recall that wt,i =
xt,i

St
(ℓ̃t,i − (Z̃t − Zt)), hence

w′
t,ij =

xt,i

St
·




1[i = j]−

(
z2t,j
St

)
/




∑

k∈[K]

z2t,k
St









=
xt,i

St
·




1[i = j]−

(
z2t,j
)
/




∑

k∈[K]

z2t,k







 .
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Thus according to the intermediate value theorem, we have

wt,i = ℓ̃t,it ·
xt,i

St
·
(
1[i = it]−

ζ2t,it∑
k∈[K] ζ

2
t,k

)
,

where

ζt := argmin
z∈∆[K]

〈Lt−1 + λℓ̃t, z〉+Ψt(z),

and λ is some constant ranged from (0, 1), implicitly determined by ℓ̃t. Furthermore, Lemma 4 guaran-
tees that

xt,i/2 ≤ ζt,i ≤ 2xt,i ∀i ∈ [K]. (25)

A.3 Bregman Divergence before Expectation: Proof of Lemma 5

Lemma 17 (Formal version of Lemma 5). We have

Divt ≤ 2048 · S−1
t (ℓskipt,it

)2(1− xt,it)
2.

Therefore, the expectation of the Bregman Divergence term Divt can be bounded by

E[Divt | Ft−1] ≤ 2048
∑

i∈[K]

S−1
t E[(ℓskipt,i )2 | Ft−1]xt,i(1− xt,i)

2.

Moreover, for any T ∈ [T ], we can bound the sum of Bregman divergence term by

T∑

t=1

Divt ≤ 4096 · ST+1K logT.

Proof. Recall the definition of wt,i, we have

Divt =
∑

i∈[K]

St(wt,i − log(1 + wt,i))

By Lemma 4, we have wt,i = xt,i/zt,i − 1 ∈ [−1/2, 1/2]. Therefore, since x− log(1 + x) ≤ x2, we have

Divt ≤
∑

i∈[K]

St ·
(
1[i = it]w

2
t,i + 1[i 6= it]w

2
t,i

)
. (26)

By Lemma 16, we have

wt,i = ℓ̃t,it ·
xt,i

St
·
(
1[i = it]−

ζ2t,it∑
k∈[K] ζ

2
t,k

)
,

and ζt,i satisfying xt,i/2 ≤ ζt,i ≤ 2xt,i by Eq. (25). Then, for i 6= it, we have

wt,i = −ℓskip
t,it
· xt,i

St
· ζt,it∑

k∈[K] ζ
2
t,k

,

w2
t,i = (ℓskip

t,it
)2 ·

x2
t,i

S2
t

·
ζ2t,it(∑

k∈[K] ζ
2
t,k

)2 ≤ 16 · (ℓskip
t,it

)2 ·
x2
t,i

S2
t

·
x2
t,it(∑

k∈[K] x
2
t,k

)2 .
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And for i = it,

wt,it = ℓskip
t,it
· 1
St
·
∑

j 6=it
ζ2t,j∑

k∈[K] ζ
2
t,k

,

w2
t,it = (ℓskip

t,it
)2 · 1

S2
t

·

(∑
j 6=it

ζ2t,j

)2

(∑
k∈[K] ζ

2
t,k

)2 ≤ 256 · (ℓskip
t,it

)2 · 1

S2
t

·

(∑
j 6=it

x2
t,j

)2

(∑
k∈[K] x

2
t,k

)2 .

Therefore, we have
∑

i∈[K]

St ·
(
1[i = it]w

2
t,i + 1[i 6= it]w

2
t,i

)

≤ 256 · (ℓskip
t,it

)2 · S−1
t ·




(∑
j 6=it

x2
t,j

)2

(∑
k∈[K] x

2
t,k

)2 +
∑

i6=it

x2
t,i · x2

t,it(∑
k∈[K] x

2
t,k

)2




(27)

Notice that
(∑

j 6=it
x2
t,j

)2

(∑
k∈[K] x

2
t,k

)2 +
∑

i6=it

x2
t,i · x2

t,it(∑
k∈[K] x

2
t,k

)2 =

(
1−

x2
t,it∑

k∈[K] x
2
t,k

)2

+

∑
i6=it

x2
t,i∑

k∈[K] x
2
t,k

·
x2
t,it∑

k∈[K] x
2
t,k

.

For xt,it ≤ 1/2, we have 4(1− xt,it)
2 ≥ 1. Then we have

(
1−

x2
t,it∑

k∈[K] x
2
t,k

)2

+

∑
i6=it

x2
t,i∑

k∈[K] x
2
t,k

·
x2
t,it∑

k∈[K] x
2
t,k

≤ 1 + 1 · 1 ≤ 8(1− xt,it)
2. (28)

For xt,it ≥ 1/2, we denote

x̃t,i :=
x2
t,i∑

k∈[K] x
2
t,k

, ∀i ∈ [K],

which satisfies x̃t,i ≤ x2
t,i/x

2
t,it
≤ 4x2

t,i for every i ∈ [K]. Since xt,it ≥ 1/2, we also have 1/2 ≤ xt,it ≤
x̃t,it ≤ 1. Therefore,

(
1−

x2
t,it∑

k∈[K] x
2
t,k

)2

+

∑
i6=it

x2
t,i∑

k∈[K] x
2
t,k

·
x2
t,it∑

k∈[K] x
2
t,k

= (1− x̃t,it)
2 + x̃t,it

∑

i6=it

x̃t,i

≤ (1− xt,it)
2 +

∑

i6=it

4x2
t,i

≤ (1− xt,it)
2 + 4




∑

i6=it

xt,i




2

≤ 5(1− xt,it)
2

(29)

Combine these cases, we get

Divt ≤
∑

i∈[K]

St ·
(
1[i = it]w

2
t,i + 1[i 6= it]w

2
t,i

)

≤ 256 · (ℓskip
t,it

)2 · S−1
t ·




(
1−

x2
t,it∑

k∈[K] x
2
t,k

)2

+

∑
i6=it

x2
t,i∑

k∈[K] x
2
t,k

·
x2
t,it∑

k∈[K] x
2
t,k





23



≤ 2048 · (ℓskip
t,it

)2 · S−1
t · (1− xt,it)

2,

where the first inequality is due to Eq. (26), the second inequality is due to Eq. (27), and the last
inequality is due to Eq. (28) for xt,it ≤ 1/2 and Eq. (29) for xt,it ≥ 1/2.

Moreover, taking expectation conditioning on Ft−1, we directly imply

E[Divt | Ft−1] ≤ 2048
∑

i∈[K]

S−1
t E[(ℓskip

t,i )2 | Ft−1]xt,i(1− xt,i)
2.

Consider the sum of Divt, we can write

T∑

t=1

Divt ≤ 2048

T∑

t=1

S−1
t · (ℓskip

t,it
)2 · (1− xt,it)

2.

Notice that by definition of St+1 in Eq. (4), we have

(K logT ) · (S2
t+1 − S2

t ) =
(
ℓclipt,it

)2
· (1− xt,it)

2.

Moreover, since |ℓclipt,it
| is controlled by Ct,it , we have

S2
t+1 ≤ S2

t + C2
t,it(1 − xt,it)

2 · (K logT )−1 = S2
t

(
1 + (4K logT )−1

)
≤ 2S2

t , (30)

where the first inequlity is due to |ℓclipt,it
| ≤ Ct,it and the definition of Ct,it in Eq. (3), and the second

inequlity holds by T ≥ 2. Therefore, as |ℓskip
t,it
| ≤ |ℓclipt,it

| trivially, we have

T∑

t=1

Divt ≤ 2048
T∑

t=1

S−1
t · (ℓclipt,it

)2 (1− xt,it)
2

≤ 2048 ·K logT

T∑

t=1

S2
t+1 − S2

t

St

= 2048 ·K logT

T∑

t=1

(St+1 + St)(St+1 − St)

St

≤ 2048(1 +
√
2)K logT

T∑

t=1

St+1 − St

= 4096 · ST +1K logT,

where the first ineuqality is by Lemma 5 and |ℓskip
t,it
| ≤ |ℓclipt,it

|, the second inequality is due to the definition

of St+1 in Eq. (4) and |ℓskip
t,it
| ≤ |ℓclipt,it

|, and the last inequality is due to the St+1 ≤
√
2St by Eq. (30).

A.4 Bounding the Expectation of Learning Rate ST+1: Proof of Lemma 6

Recall the definition of St in Eq. (31), we have

ST+1 =

√√√√4 +

T∑

t=1

(ℓclipt,it
)2 · (1− xt,it)

2 · (K logT )−1

≤

√√√√4 +

T∑

t=1

(ℓclipt,it
)2 · (K logT )−1.
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Therefore, to control E[ST+1], it suffices to control E[S] where S is defined as follows:

S :=

√√√√4 +

T∑

t=1

(ℓclipt,it
)2 · (K logT )−1. (31)

The formal proof of Lemma 6 which bounds E[ST+1] is given below.

Lemma 18 (Restatement of Lemma 6). We have

E[ST+1] ≤ 2 · σ(K logT )−
1
αT

1
α . (32)

Proof. By clipping operation, we have

|ℓclipt,it
| ≤ Ct,it = St ·

1

4(1− xt,it)
≤ St ≤ ST+1 ≤ S.

Therefore, we know

4 +

T∑

t=1

(ℓclipt,it
)2 · (K logT )−1 ≤ 1

4

T∑

t=1

|ℓt,it |α · S2−α · (K logT )−1,

where the inequality is given by S2 ≥ 16, |ℓclipt,it
| ≤ S and |ℓclipt,it

| ≤ |ℓt,it |. Hence,

Sα ≤ 4

3
(K log T )−1

T∑

t=1

|ℓt,it |α.

Take expectation on both sides and use the convexity of mapping x 7→ xα. We get

E[S] ≤
(
4

3

)1/α

(K logT )−1/α · σ · T 1/α

≤ 2(K logT )−1/α · σ · T 1/α.

The conclusion follows from the fact that ST+1 ≤ S.

A.5 Adversarial Bounds for Bregman Divergence Terms: Proof of Theo-

rem 7

Equipped with Lemma 6, we can verify the main result (Theorem 7) for Bregman divergence terms in
adversarial case.

Theorem 19 (Formal version of Theorem 7). We have

E

[
T∑

t=1

Divt

]
≤ 8192 · σK1−1/αT 1/α(log T )1−1/α

Proof. By Lemma 17 and Lemma 6, we have

E

[
T∑

t=1

Divt

]
≤ 4096 · E[ST+1] ·K logT

≤ 8192 · σK1−1/αT 1/α(logT )1−1/α.

Ignoring the logarithmic terms, we will get E

[∑T
t=1 Divt

]
≤ Õ(σK1−1/αT 1/α).
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A.6 Stochastic Bounds for Bregman Divergence Terms: Proof of Theorem 8

We first calculate the expectation of a single Bregman divergence term E[Divt | Ft−1].

Lemma 20. Conditioning on Ft−1, the expectation of Bregman divergence term Divt can be bounded
by

E[Divt | Ft−1] ≤ 4096 · S1−α
t σα(1− xt,i∗).

Proof. From Lemma 17, we have

E[Divt | Ft−1] ≤ 2048 · S−1
t E

[
((ℓskip

t,it
)2(1− xt,it)

2 | Ft−1

]
(33)

≤ 2048 · S−1
t E

[
(ℓclipt,it

)2(1− xt,it)
2 | Ft−1

]
(34)

By definition of Ct,it in Eq. (3), we have

E[Divt | Ft−1] ≤ 2048 · S−1
t E

[
C2−α

t,it
(1− xt,it)

2−α|ℓt,it |α(1− xt,it)
α
]

≤ 2048 · S
1−α
t

42−α
σα

E[(1 − xt,it)
α | Ft−1]

≤ 2048 · S1−α
t σα

∑

i∈[K]

xt,i(1− xt,i)
α

Notice that
∑

i∈[K]

xt,i(1− xt,i)
α ≤

∑

i6=i∗

xt,i + xt,i∗(1− xt,i∗)

= (1− xt,i∗) + xt,i∗(1− xt,i∗)

≤ 2(1− xt,i∗)

Therefore, we have

E[Divt | Ft−1] ≤ 4096 · S1−α
t σα(1− xt,i∗).

Then we bound the sum of Bregman divergence in stochastic case by the stopping time argument.

Theorem 21 (Formal version of Theorem 8). In stochastic settings, the sum of Bregman divergence
terms can be bounded by

E

[
T∑

t=1

Divt

]
≤ 8192 · 16384 1

α−1 ·K∆
− 1

α−1

min σ
α

α−1 logT +
1

4
RT .

Proof. We first consider a stopping threshold M1

M1 := inf
{
s > 0 : 4096 · s1−ασα ≤ ∆min/4

}
(35)

Then, define the stopping time T1 as

T1 := inf {t ≥ 1 : St ≥M1} ∧ (T + 1).

Since we have St+1 ≤ (1+(4K logT )−1)St ≤ 2St by Eq. (30), we have ST1 ≤ 2M1. Then by Lemma 17,
we have

E

[
T −1∑

t=1

Divt

]
≤ 4096 · E [ST1 · (K logT )] ≤ 8192 ·M1 ·K logT.
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Therefore, by Lemma 20,

E

[
T∑

t=1

Divt

]
= E

[
T1−1∑

t=1

Divt

]
+ E

[
T∑

t=T1

E[Divt | Ft−1]

]

≤ 8192 ·M1 ·K logT + E

[
T∑

t=T1

4096 · E[σαS1−α
t (1 − xt,i∗) | Ft−1]

]

≤ 8192 ·M1 ·K logT + E

[
T∑

t=T1

4096 ·M1−α
1 σα(1− xt,i∗)

]
,

where the last inequality is due to St ≥M for t ≥ T1 and 1−α < 0. Therefore, by definition of M1, we
have

E

[
T∑

t=1

Divt

]
≤ 8192 · ∆

− 1
α−1

min

(4 · 4096)− 1
α−1

· σ α
α−1 ·K logT +

∆min

4
E

[
T∑

t=T1

(1− xt,i∗)

]

≤ 8192 · 16384 1
α−1∆

− 1
α−1

min · σ α
α−1 ·K logT +

1

4
RT ,

where the first inequality is due to the definition of M1 in Eq. (35) and the second inequality is due to

RT ≥ E[∆min

∑T
t=1 1− xt,i∗ ] in stochastic case.

B Ψ-Shifting Terms: Omitted Proofs in Section 5.3

B.1 Ψ-Shifting Terms before Expectation: Proof of Lemma 9

First we give the formal version of Lemma 9.

Lemma 22 (Formal version of Lemma 9). We have for any t ∈ [T ],

Shiftt ≤
∑

i∈[K]

(St+1 − St)(− log(ỹi)) ≤
1

2
S−1
t (ℓclipt,it

)2(1− xt,it)
2.

Moreover, for any T ∈ [T − 1], we have

T∑

t=0

Shiftt ≤ ST+1 ·K logT

Proof. By definition of Ψt in Eq. (2), we have

Shiftt = (Ψt+1(ỹ)−Ψt(ỹ))− (Ψt+1(xt+1)−Ψt(xt+1))

≤
∑

i∈[K]

(St+1 − St)(− log(ỹi))

≤ (K logT ) · S
2
t+1 − S2

t

St+1 + St

≤ 1

2
S−1
t (ℓclipt,it

)2(1 − xt,it)
2,

where the first inequality is by Ψt+1(x) ≥ Ψt(x), the second inequality is due to the definition of ỹ,
and the third inequality holds by St+1 ≥ St. Moreover, for any T ∈ [T − 1], we also have

T∑

t=0

Shiftt =

T∑

t=0

(Ψt+1(ỹ)−Ψt(ỹ))− (Ψt+1(xt)−Ψt(xt))
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≤
T∑

t=0

(St+1 − St) ·K logT

= ST +1 ·K logT.

B.2 Adversarial Bounds for Ψ-Shifting Terms: Proof of Theorem 10

In adversarial case, we have already bounded the expectation of E[ST+1] in Appendix A.5. Therefore,
we have the following lemma.

Theorem 23 (Formal version of Theorem 10). The expectation of the sum of Ψ-shifting terms can be
bounded by

E

[
T−1∑

t=0

Shiftt

]
≤ 2 · σK1−1/αT 1/α(logT )1−1/α.

Proof. By Lemma 22, we have

E

[
T−1∑

t=0

Shiftt

]
≤ E[ST ] ·K logT ≤ E[ST+1] ·K logT.

Notice that Lemma 6 gives the bound of E[ST+1]. Therefore, we have

E

[
T−1∑

t=0

Shiftt

]
≤ 2 · σK1−1/αT 1/α(logT )1−1/α.

B.3 Stochastic Bounds for Ψ-Shifting Terms: Proof of Theorem 11

Again, we start with a single-step bound on Shiftt.

Lemma 24. Conditioning on Ft−1 for any t ∈ [T − 1], we have

E[Shiftt | Ft−1] ≤ S1−α
t σα(1 − xt,i∗)

Proof. According to Lemma 22, we have

E[Shiftt | Ft−1] ≤
1

2
S−1
t E

[
ℓclipt,it

(1 − xt,it)
2
∣∣∣Ft−1

]
.

By definition of Ct,it in Eq. (3), we have

E[Shiftt | Ft−1] ≤
1

2
S−1
t · E

[
C2−α

t,it
(1− xt,it)

2−α|ℓt,it |α(1− xt,it)
α | Ft−1

]

≤ S1−α
t

2 · 42−α
σα

E[(1 − xt,it)
α | Ft−1]

≤ 1

2
S1−α
t σα

∑

i∈[K]

xt,i(1− xt,i)
α

By similar method used in the proof of Lemma 20, we further have

∑

i∈[K]

xt,i(1 − xt,i)
α ≤

∑

i6=i∗

xt,i + xt,i∗(1− xt,i∗) ≤ 2(1− xt,i∗).
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Therefore, we have

E[Shiftt | Ft−1] ≤ S1−α
t σα(1 − xt,i∗)

Theorem 25 (Formal version of Theorem 11). We can bound the sum of Ψ-shifting terms by the
following inequality.

E

[
T−1∑

t=0

Shiftt

]
≤ 2Kσ

α
α−1∆

− 1
α−1

min logT +
1

4
RT

Proof. Similar to the proof in Theorem 21, we consider a stopping threshold M2 defined as follows

M2 := inf
{
s > 0 : s1−ασα ≤ ∆min/4

}
.

Then we similarly define the stopping time T2 as

T2 := inf {t ≥ 1 : St ≥M2} ∧ T.

Therefore, we have ST ≤ 2ST −1 ≤ 2M2. Then by Lemma 22, we have

E

[
T2∑

t=0

Shiftt

]
≤ E[ST2+1] ·K log T ≤ 2M2 ·K logT

Therefore, we have

E

[
T−1∑

t=0

Shiftt

]
= E

[
T2−1∑

t=0

Shiftt

]
+ E

[
T−1∑

t=T2

E[Shiftt | Ft−1]

]

≤ 2M2 ·K logT + E

[
T−1∑

t=T2

σα
E[S1−α

t (1− xt,i∗) | Ft−1]

]

≤ 2M2 ·K logT + E

[
T−1∑

t=T2

σαM1−α
2 E[(1 − xt,i∗) | Ft−1]

]

where the first inequality holds by Lemma 24 and the second inequality is due to St ≥ M2 for t ≥ T2
and 1 − α < 0. Notice that RT ≥ E[

∑T
t=1 ∆min(1 − xt,i∗)]. We can combine the definition of M2 and

get

E

[
T−1∑

t=0

Shiftt

]
≤ 2 ·∆− 1

α−1

min σ
α

α−1 ·K logT +
1

4
RT

C Skipping Loss Terms: Omitted Proofs in Section 5.4

C.1 Constant Clipping Threshold Argument: Proof of Lemma 12

Proof of Lemma 12. For a given clipping threshold constant M , we first perform clipping operation
Clip(ℓt,it ,M), which gives a universal clipping error

SkipErr
Univ
t (M) :=





ℓt,it −M ℓt,it > M

0 −M ≤ ℓt,it ≤M

ℓt,it +M ℓt,it < −M
.
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If Ct,it ≥ M , then this clipping is ineffective. Otherwise, we get the following action-dependent
clipping error

SkipErr
ActDep
t (M) :=

{
SkipErrt − SkipErr

Univ
t Ct,it < M

0 Ct,it ≥M
.

Therefore, we directly have |SkipErrt| ≤ |SkipErr
Univ
t (M)| + |SkipErr

ActDep
t (M)|. Another impor-

tant observation is that if SkipErr
ActDep
t (M) 6= 0, we have St ≤M , (ℓclipt,it

)2 = C2
t,it , and |SkipErr

ActDep
t (M)| ≤

M , which implies that

S2
t+1 = S2

t + C2
t,it · (1− xt,it)

2 · (K logT )−1 = S2
t

(
1 + (16K logT )−1

)
.

Thus the number of occurrences of non-zero SkipErr
ActDep
t (M)’s is upper-bounded by ⌈log√

1+(K log T )−1/4
M⌉.

Then we can bound the sum of the sub-optimal skipping loss by

E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]

≤ E

[
T∑

t=1

|SkipErr
Univ
t (M)| · 1[it 6= i∗]

]
+ E

[
T∑

t=1

|SkipErr
ActDep
t (M)|

]

≤ E

[
T∑

t=1

|ℓt,it | · 1[|ℓt,it ≥M ] · 1[it 6= i∗]

]
+M · E[log√

1+(16K log T )−1 M ] +M

≤ σαM1−α
E

[
T∑

t=1

1[it 6= i∗]

]
+ 2M · logM

log(1 + (16K logT )−1)
+M.

C.2 Adversarial Bounds for Skipping Losses: Proof of Theorem 13

Theorem 26 (Formal version of Theorem 13). By setting Madv := σ(K logT )−1/αT
1/α, we have

E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]

≤ σK1−1/αTα ·
(
(logT )1−

1/α +
2

α
(log T )2−

1/α + 2 logσ − 2

α
logK − 2

α
log logT

)

Proof. Notice that we have 2x ≥ log(1 + x−1) holding for x ≥ 1. Therefore,

E

[
T∑

t=1

|SkipErrt · 1[it 6= i∗]|
]

≤ σα(Madv)1−α
E

[
T∑

t=1

1[it 6= i∗]

]
+ 2Madv · logMadv ·K logT.

By the expression of Madv, we have

E

[
T∑

t=1

|SkipErrt · 1[it 6= i∗]|
]

≤ σ(K log T )1−
1/αT

1/α + 16 · σ(K logT )1−
1/αT

1/α · log
(
σ(K logT )−

1/αT
1/α
)

= σK1−1/αT
1/α ·

(
(log T )1−

1/α +
2

α
(logT )2−

1/α + 2 logσ − 2

α
logK − 2

α
log logT

)
.
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C.3 Stochastic Bounds for Skipping Losses: Proof of Theorem 14

Theorem 27 (Formal version of Theorem 14). By setting M sto := 4
1

α−1σ
α

α−1∆
− 1

α−1

min , we have

E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]

≤ σ
α

α−1∆
− 1

α−1

min ·K logT · 4
1

α−1

α− 1
(2 log 4 + α log σ + log(1/∆min)) +

1

4
RT .

Proof. Since we set the constant in stochastic case as M sto := 4
1

α−1σ
α

α−1∆
− 1

α−1

min , then by 2x ≥ log(1 +
x−1), ∀x ≥ 1, we have

E

[
T∑

t=1

|SkipErrt · 1[it 6= i∗]|
]

≤ σα(M sto)1−α
E

[
T∑

t=1

1[it 6= i∗]

]
+ 2M sto · logM sto ·K logT

=
1

4
∆minE

[
T∑

t=1

1[it 6= i∗]

]
+ σ

α
α−1∆

− 1
α−1

min ·K logT · 4
1

α−1

α− 1
(2 log 4 + α log σ + log(1/∆min))

Since we have

RT ≥ E

[
T∑

t=1

∆min1[it 6= i∗]

]
,

which shows that

E

[
T∑

t=1

|SkipErrt · 1[it 6= i∗]|
]

≤ σ
α

α−1∆
− 1

α−1

min ·K logT · 4
1

α−1

α− 1
(2 log 4 + α log σ + log(1/∆min)) +

1

4
RT .

D Main Theorem: Proof of Theorem 3

In this section, we prove the main theorem. Here we present the formal version of our main result.

Theorem 28 (Formal version of Theorem 3). For Algorithm 1, under the adversarial settings, we have

RT ≤ σK1−1/αTα ·
(
8195(logT )1−

1/α +
2

α
(logT )2−

1/α + 2 logσ − 2

α
logK − 2

α
log logT

)
+ σK

= Õ
(
σK1−1/αT

1/α
)
.

Moreover, for the stochastic settings, we have

RT ≤ 4 ·K
(

σα

∆min

) 1
α−1

logT ·
(
8192 · 16384 1

α−1 + 2 +
4

1
α−1

α− 1

(
2 log 4 + log

(
σα

∆min

)))

= O
(
K

(
σα

∆min

) 1
α−1

logT · log σα

∆min

)
.
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Proof. We denote y ∈ R
K as the one-hot vector on the optimal action i∗ ∈ [K], i.e., yi := 1[i = i∗]. By

definition of RT in Eq. (1), we have

RT = E

[
T∑

t=1

〈xt − y, ℓt〉
]
.

Consider the adjusted benchmark ỹ where

ỹi :=

{
1
T i 6= i∗

1− K−1
T i = i∗

.

By standard regret decomposition in FTRL-based MAB algorithm analyses, we have

RT = E

[
T∑

t=1

〈ỹ − y, ℓskip
t 〉

]

︸ ︷︷ ︸
Benchmark Calibration Error

+E

[
T∑

t=1

〈xt − ỹ, ℓskip
t 〉

]

︸ ︷︷ ︸
Main Regret

+E

[
T∑

t=1

〈xt − y, ℓt − ℓ
skip
t 〉

]

︸ ︷︷ ︸
Skipping Error

. (36)

As in a typical log-barrier analysis, the Benchmark Calibration Error is not the dominant term. This
is because we have, by definitions of y and ỹ,

E

[
T∑

t=1

〈ỹ − y, ℓskip
t 〉

]
≤

T∑

t=1

K − 1

T
E[|ℓskip

t,it
|] ≤

T∑

t=1

K − 1

T
E[|ℓt,it |] ≤ σK,

which is independent from T . Therefore, the key is analyzing the other two terms.
By the FTRL decomposition in Lemma 29, we have

Main Regret = E

[
T∑

t=1

〈xt − ỹ, ℓskip
t 〉

]
= E

[
T∑

t=1

〈xt − ỹ, ℓ̃t〉
]

≤
T∑

t=1

E[DΨt
(xt, zt)] +

T−1∑

t=0

E [(Ψt+1(ỹ)−Ψt(ỹ))− (Ψt+1(xt+1)−Ψt(xt+1))] ,

where
DΨt

(y,x) = Ψt(y)−Ψt(x)− 〈∇Ψt(x),y − x〉,
given the Bregman divergence induced by the t-th regularizer Ψt, and zt denotes the posterior optimal
estimation in episode t, namely

zt := argmin
z∈∆[K]

(
t∑

s=1

〈ℓ̃s, z〉+Ψt(z)

)
.

As mentioned in Section 5, we denote Divt := DΨt
(xt, zt) for the Bregman divergence between

xt and zt under regularizer Ψt, Shiftt := [(Ψt+1(ỹ)−Ψt(ỹ))− (Ψt+1(xt+1)−Ψt(xt+1))] be the Ψ-

shifting term, and SkipErrt := ℓt,it − ℓskip
t,it

= ℓt,it1[|ℓt,it | ≥ Ct,it ] be the sub-optimal skipping losses.
Then, we can reduce the analysis of main regret to bounding the sum of Bregman divergence term
E[Divt] and Ψ-shifting term E[Shiftt]. Moreover, for sub-optimal skipping losses, we have

〈xt − y, ℓt − ℓ
skip
t 〉 =

∑

i∈[K]

(xt,i − yi) · (ℓt,i − ℓskip
t,i )

≤
∑

i6=i∗

xt,i ·
∣∣∣ℓt,i − ℓskip

t,i

∣∣∣+ (xt,i∗ − 1) ·
(
ℓt,i∗ − ℓskip

t,i∗

)

= E [|SkipErrt| · 1[it 6= i∗] | Ft−1] + (xt,i∗ − 1) ·
(
ℓt,i∗ − ℓskip

t,i∗

)
.
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Notice that the factor (xt,i∗ −1) in the second term is negative and Ft−1-measurable. Then we have

E

[
ℓt,i∗ − ℓskip

t,i∗

∣∣∣Ft−1

]
= E [1[|ℓt,i∗ | ≥ Ct,i∗ ] · ℓt,i∗ ] ≥ 0,

where the inequality is due to the truncated non-negative assumption (Assumption 1) of the optimal

arm i∗. Therefore, we have E[(xt,i∗ − 1) · (ℓt,i∗ − ℓskip
t,i∗ ) | Ft−1] ≤ 0 and thus

E[〈xt − y, ℓt − ℓ
skip
t 〉 | Ft−1] ≤ E[|SkipErrt| · 1[it 6= i∗] | Ft−1],

which gives an approach to control the skipping error by the sum of skipping losses SkipErrt’s where
we pick a sub-optimal arm it 6= i∗. Formally, we give the following inequality:

Skipping Error ≤ E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
.

To summarize, the regret RT decomposes into the sum of Bregman divergence terms E[Divt], the
Ψ-shifting terms E[Shiftt], and the sub-optimal skipping losses E[|SkipErrt| · 1[it 6= i∗]], namely

RT ≤ E

[
T∑

t=1

Divt

]

︸ ︷︷ ︸
Bregman Divergence Terms

+E

[
T−1∑

t=0

Shiftt

]

︸ ︷︷ ︸
Ψ-Shifting Terms

+E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]

︸ ︷︷ ︸
Sub-optimal Skipping Losses

+σK.

We discuss the regret upper bound under adversarial and stochastic environments separately.
Adversarial Cases. According to Theorems 19, 23, and 26, we have

RT ≤ E

[
T∑

t=1

Divt

]
+ E

[
T−1∑

t=0

Shiftt

]
+ E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
+ σK

≤ 8192 · σK1−1/αT
1/α(logT )1−

1/α + 2 · σK1−1/αT
1/α(log T )1−

1/α

+ σK1−1/αT
1/α ·

(
(logT )1−

1/α +
2

α
(logT )2−

1/α + 2 log σ − 2

α
logK − 2

α
log logT

)
+ σK

= σK1−1/αT
1/α ·

(
8195(logT )1−

1/α +
2

α
(log T )2−

1/α + 2 log σ − 2

α
logK − 2

α
log logT

)
+ σK.

Stochastic Cases. According to Theorems 21, 25, and 27, we have

RT ≤ E

[
T∑

t=1

Divt

]
+ E

[
T−1∑

t=0

Shiftt

]
+ E

[
T∑

t=1

|SkipErrt| · 1[it 6= i∗]

]
+ σK

≤ 8192 · 16384 1
α−1 ·K∆

− 1
α−1

min σ
α

α−1 logT +
1

4
RT

+ 2Kσ
α

α−1∆
− 1

α−1

min logT +
1

4
RT

+ σ
α

α−1∆
− 1

α−1

min ·K logT · 4
1

α−1

α− 1
(2 log 4 + α log σ + log(1/∆min)) +

1

4
RT + σK

≤ K

(
σα

∆min

) 1
α−1

logT ·
(
8192 · 16384 1

α−1 + 2 +
4

1
α−1

α− 1

(
2 log 4 + log

(
σα

∆min

)))
+

3

4
RT ,

which implies that

RT ≤ 4 ·K
(

σα

∆min

) 1
α−1

logT ·
(
8192 · 16384 1

α−1 + 2 +
4

1
α−1

α− 1

(
2 log 4 + log

(
σα

∆min

)))
.

Therefore, we finish the proof, which shows the BoBW property of Algorithm 1.
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The following lemma characterizes the FTRL regret decomposition, which is the extension of the
classical FTRL bound (Lattimore and Szepesvári, 2020, Theorem 28.5). Dann et al. (2023b, Lemma
17) also gave a similar result, but we include a full proof here for the sake of completeness.

Lemma 29 (FTRL Regret Decomposition). In uniINF (Algorithm 1), we have (set S0 = 0 for sim-
plicity),

E

[
T∑

t=1

〈xt − ỹ, ℓ̃t〉
]
≤

T∑

t=1

E[DΨt
(xt, zt)] + E[(Ψt(ỹ)−Ψt−1(ỹ))− (Ψt(xt)−Ψt−1(xt))],

where DΨt
is the Bregman divergence induced by Ψt, and zt is given by

zt := argmin
z∈∆[K]

(
t∑

s=1

〈ℓ̃s, z〉+Ψt(z)

)
.

Proof. We denote Lt :=
∑t

s=1 ℓ̃s. Denote f∗ : Rk → R as the Frenchel conjugate of function f : RK →
R, where

f∗(y) := sup
x∈RK

{〈y,x〉 − f(x)} .

Moreover, denote f : RK → R as the restriction of f : RK → R on ∆[K], i.e,

f(x) =

{
f(x), x ∈ ∆[K]

∞, x /∈ ∆[K]
.

Therefore, by definition, we have

zt = ∇Ψ
∗

t (−Lt), xt = ∇Ψ
∗

t (−Lt−1).

Then recall the properties of Bregman divergence, we have

DΨt
(xt, zt) = DΨt

(∇Ψ∗

t (−Lt−1),∇Ψ
∗

t (−Lt)) = DΨ
∗

t
(−Lt,−Lt−1).

Therefore, we have

T∑

t=1

〈xt − ỹ, ℓ̃t〉 = 〈ỹ,−LT 〉 −
T∑

t=1

〈xt,−ℓ̃t〉

=

T∑

t=1

(
Ψ

∗

t (−Lt)−Ψ
∗

t (−Lt−1)− 〈∇Ψ
∗

t (−Lt−1),−Lt +Lt−1〉
)

+ 〈ỹ,−LT 〉 −
T∑

t=1

(
Ψ

∗

t (−Lt)−Ψ
∗

t (−Lt−1)
)

=
T∑

t=1

DΨ
∗

t
(−Lt,−Lt−1) + 〈ỹ,−LT 〉 −

T∑

t=1

(
Ψ

∗

t (−Lt)−Ψ
∗

t (−Lt−1)
)

=

T∑

t=1

DΨt
(xt, zt) + 〈ỹ,−LT 〉 −

T∑

t=1

(
Ψ

∗

t (−Lt)−Ψ
∗

t (−Lt−1)
)
.

For the second and third terms, we have

〈ỹ,−LT 〉 −
T∑

t=1

(
Ψ

∗

t (−Lt)−Ψ
∗

t (−Lt−1)
)
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= 〈ỹ,−LT 〉 −
T∑

t=1

(
Ψ

∗

t (−Lt)− 〈xt,−Lt−1〉+Ψt(xt)
)

= 〈ỹ,−LT 〉 −
T∑

t=1

(
sup

x∈∆[K]

{〈x,−Lt〉 −Ψt(x)} − 〈xt,−Lt−1〉+Ψt(xt)

)

≤ 〈ỹ,−LT 〉 −
T−1∑

t=1

(〈xt+1,−Lt〉 −Ψt(xt+1)− 〈xt,−Lt−1〉+Ψt(xt))

− sup
x∈∆[K]

{〈x,−LT 〉 −ΨT (x)}+ 〈xT ,−LT−1〉 −ΨT (xT )

= 〈ỹ,−LT 〉 −
T∑

t=1

(Ψt(xt)−Ψt−1(xt))− sup
x∈∆[K]

{〈x,−LT 〉 −ΨT (x)}

= 〈ỹ,−LT 〉 −ΨT (ỹ)− sup
x∈∆[K]

{〈x,−LT 〉 −ΨT (x)}+ΨT (ỹ)−
T∑

t=1

(Ψt(xt)−Ψt−1(xt))

≤
T∑

t=1

(Ψt(ỹ)−Ψt−1(ỹ))−
T∑

t=1

(Ψt(xt)−Ψt−1(xt)) ,

which finishes the proof.
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