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Nearly Minimax Optimal Reinforcement Learning with
Linear Function Approximation
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Erratum: We call the attention of the reader that there is
a technical error in building the over-optimistic value func-

tion V} () in the ICML camera ready (Hu et al., 2022)
for our paper. This technical error has been identified by
(He et al., 2022; Agarwal et al., 2022). They have indepen-
dently proposed new algorithms and analyses to achieve the
minimax optimal regret for linear MDPs. We refer read-
ers to their papers for more details. In this manuscript, we
have fixed the error of our algorithm by using the tech-
nique of the “rare-switching” value function from (He et al.,
2022). We acknowledge that (He et al., 2022; Agarwal
et al., 2022) are the first to achieve the minimax optimal

regret for linear MDPs (to the best of our knowledge).
Abstract

We study reinforcement learning with linear func-
tion approximation where the transition probabil-
ity and reward functions are linear with respect to
a feature mapping ¢ (s, a). Specifically, we con-
sider the episodic inhomogeneous linear Markov
Decision Process (MDP), and propose a novel
computation—efﬁcignt algorithm, LSVI-UCB™,
which achieves an O(Hd+/T) regret bound where
H is the episode length, d is the feature dimen-
sion, and T is the number of steps. LSVI-UCB*
builds on weighted ridge regression and upper
confidence value iteration with a Bernstein-type
exploration bonus. Our statistical results are ob-
tained with novel analytical tools, including a
new Bernstein self-normalized bound with con-
servatism on elliptical potentials, and refined anal-
ysis of the correction term. This is a minimax
optimal algorithm for linear MDPs up to logarith-
mic factors, which closes the V/Hd gap between
the upper bound of O(v H3d3T) in (Jin et al.,
2020) and lower bound of Q(Hd+/T) for linear
MDPs.
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1. Introduction

Reinforcement Learning (RL) has demonstrated phenom-
enal empirical success in many areas, including games,
robotic control, etc., where improving sample complexity
is always an important topic. When the state space and
action space are finite, the Markov decision process (MDP)
has been proven to achieve nearly minimax optimal sample-
complexity with the generative model in (Azar et al., 2013).
For harder RL settings, nearly minimax optimal sample-
complexities are obtained in (Azar et al., 2017) for finite
horizon episodic MDPs, and (He et al., 2021; Tossou et al.,
2019) for infinite horizon MDPs!. However, MDPs are
known to suffer from the curse-of-dimensionality due to
large and possibly infinite state and action space.

Function approximation is an essential approach for han-
dling large MDPs, which assumes that the problem structure
has a compact representation concerning state or state-action
pairs and enables the development of nearly minimax opti-
mal theoretical guarantees for RL problems. Linear func-
tion approximation is one of the most fundamental function
approximations. It has a significant impact since many prob-
lems can be linearly-parameterized structurally or combined
with embedding, where linear MDPs and linear mixture
MDPs are two of the most popular models. Representative
works for these two settings are presented in Table 1.

In this paper, we design the LSVI-UCB™ algorithm, which
reaches minimax optimal regret up to logarithmic factors.
LSVI-UCB™ overcomes barriers to nearly minimax opti-
mality in existing works (Jin et al., 2020; Wang et al., 2020b;
Zanette et al., 2020b; Wang et al., 2020a) for linear MDPs
and their variations, including overly aggressive exploration
and extra cost for building a uniform convergence argument
by covering net. It constructs a Bernstein-type bonus to
perform efficient exploration, which enables a v/H factor
reduction in regret. Besides, the extra v/d dependency from
building the uniform convergence argument can be removed
by our novel technique of bounding the correction term
(P — P)(V — V*). Notably, minimax optimal algorithms
(Azar et al., 2017; Zanette & Brunskill, 2019) for tabular

! An algorithm is nearly minimax optimal if its sample complex-
ity matches the minimax lower bound up to logarithmic factors.



Nearly Minimax Optimal Reinforcement Learning with Linear Function Approximation

Table 1. Theoretical results on RL with linear function approxima-
tion, where { denotes that rewards are adversarial, and the lower
bound holds for both settings.

Algorithm Regret
Linear MDP

OPT-RLSVI (Zanette et al., 2020a) ~ O(H?d*/T)
LSVI-UCB (Jin et al., 2020) O(WH3dT)
LSVI-UCB++(He et al., 2022) O(HdT)
VOQL (Agarwal et al., 2022) O(HdVT)
LSVI-UCB™ (this paper) O(HdVT)

Linear Mixture MDP

OPPOT (Cai et al., 2020) O(VH3d?T)
UCRL-VTR (Ayoub et al., 2020) O(WH3d?T)
UCRL-VTR" (Zhou etal., 2021)  O(vH2d?T + H3dT)
Lower Bound (Zhou et al., 2021) Q(HIVT)

MDPs also utilize the Bernstein-type bonus for exploration
with refined consideration of the correction term in analy-
sis. However, results for tabular MDPs cannot be applied
directly to our settings due to the need for building the
Bernstein inequality for vector-valued martingales in linear
settings. It is worth mentioning that the above Bernstein
inequality has been studied in (Zhou et al., 2021), where
the UCRL-VTR™ is nearly minimax optimal when d > H
for linear mixture MDPs. By contrast, our proposed LSVI-
UCB™ algorithm achieves nearly minimax optimal regret
without requiring this assumption for linear MDPs and can
be further generalized to linear mixture MDPs such that the
nearly minimax optimal regret can also be obtained without
d > H. This is because our proposed Bernstein inequality
(Theorem 7.1) is sharper by considering the conservatism
on elliptical potentials. Our contributions are summarized
below:

* We develop a novel Bernstein bound of 6(0\/3 +
R) for self-normalized martingales, which is sharper
than the analog inequalities in (Zhou et al., 2021). By
utilizing the conservatism on elliptical potentials, the
bound can be further improved to O(o+/d), which
serves as a new analytical tool for RL.

* We propose the LSVI-UCB™ algorithm based on a
Bernstein-type exploration bonus and weighted ridge
regression, with weights determined by value function
variances and exploration uncertainty. LSVI-UCB™*
achieves an O (H dvT ) regret, and is minimax opti-
mal up to logarithmic factors in large-sample regime.

* We improve the analytical framework of statistical
complexity for linear MDPs by bounding the correction
term (P — P)(V — V). Combined with the Bernstein
self-normalized bound, this new analytical framework

can remove the extra dependencies on H and d, which
is very different from the traditional Hoeffding bound
used in (Jin et al., 2020; Wang et al., 2020b;a).

Notations Scalars are denoted in lower case letters, and
vectors/matrices are denoted in boldface letters. Denote
|x|4 = =T Az for vector z and positive definite matrix A.
Denote {1, ...,n} as [n] and the truncated value of z in [a, b]
interval as [], ) for a < b. Define a, = O(b,,) if there
exists an absolute constant ¢ > 0 such that a,, < ¢b,, holds
for all n > 1 and define a,, = €2(b,,) for inverse direction.

O(-) further suppresses the polylogarithmic factors in O(-).

2. Related Work

Linear Bandits Linear stochastic bandits can be regarded
as a special case of linearly-parameterized MDPs with
episode length 1. (Dani et al., 2008) proposes an algo-
rithm with O(d~/T log® T)) regret by building confidence
ball with Freedman inequality (Freedman, 1975). (Abbasi-
Yadkori et al., 2011) improves the regret to O(d~/T log® T)
with a self-normalized tail inequality, derived by the method
of mixture (Victor et al., 2009). (Li et al., 2021) further
proposes an algorithm with O(d+/T log T poly(loglogT))
regret by bounding the supremum of self-normalized
processes, which matches the lower bound up to a
poly(log log T') factor. The self-normalized tail inequalities
for linear bandits in these works are all Hoeffding-type, i.e.,
only consider sub-Gaussian noises. However, for linear RL,
Bernstein-type inequalities considering the sub-exponential
noise, are necessary for sharper statistical results.

RL with Linear Function Approximation Recent
works have focused on designing statistically and/or compu-
tationally efficient algorithms for RL with linear function
approximation. The first sample efficient algorithm is in-
troduced by (Jiang et al., 2017), where low Bellman rank
is considered. Subsequent works on this setting include
(Dann et al., 2018; Sun et al., 2019). (Yang & Wang, 2019)
develops the first statistically and computationally efficient
algorithm for linear MDPs with a simulator, where the tran-
sition probability and reward functions are linear concerning
a feature mapping ¢(s, a). Subsequently, (Jin et al., 2020)
considers RL settings for linear MDPs and propose LSVI-
UCB algorithm reaching O (v H3d3T) regret. Concurrently,
(Zanette et al., 2020a) provides a Thompson sampling based
algorithm with regret bound of O(d? H?+/T). More works
generalize linear MDPs includes (Zanette et al., 2020b) for
low inherent bellman error, (Wang et al., 2020b) for linear
Q function, and (Wang et al., 2020a) for bounded Eluder
dimension.

Another popular linearly-parameterized MDP is the lin-
ear mixture MDP, where transition probability is linear to
the feature function over (state, action, next state) triples.
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(Modi et al., 2020) firstly considers the statistical com-
plexity of this setting and (Yang & Wang, 2020) pro-
vides an O(H?dlog T+/T') regret with special case of low-
dimensional representation of the transition matrix. Sub-
sequently, (Jia et al., 2020; Ayoub et al., 2020) proposes
UCRL-VTR algorithm with O(v H3d?T) regret, and (Cai
et al., 2020) considers adversarial rewards setting, giving
same regret. Notably, the nearly minimax optimal regret for
linear mixture MDP is first obtained by UCRL-VTR™ in
(Zhou et al., 2021) under d > H case.

3. Preliminaries

We consider episodic finite horizon MDP M =
{S, A, H,{Py}n,{rn}n}, where S is the state space, A is
the action space, H € Z" is the length of each episode,
Pp,:SxA— A(S)andr, : S x A — [0, 1] are time-
dependent transition probability and deterministic reward
function. We assume that S is a measurable space with
possibly infinite number of elements and A is a finite set.

For a time-inhomogeneous MDP, the policy is time-
dependent, which is denoted as 7 = {rmy,...,mpy}. Here
7 (s) is the action that agent takes at state s at the h-th step.
The value function V;™ : & — R is the expected value of
cumulative rewards received under policy = when starting
from a state at h-th step, given as

H
Vir(s) :=E l Z rh(SpryTh (Sh)) | Sh = S,7T‘| ,

h'=h

for any s € S,h € [H]. The state-action function Q7 :
S x A — R gives the expected value of cumulative rewards
starting from a state-action pair at h-th step, defined as

H
QZ(S,CL) = E l Z Tht (sh/7ah/) | Sp = S,ap = a, W] 5

h'=h
for any (s,a) € & x A,h € [H]. For any function
V: S — R, we denote PV (s,a) = Eg p, (15,0)V (5)
and [V, V] (s,a) = P,V?(s,a) — [P,V (s,a)]?, where V2
stands for the function whose value at s is V2(s). The
Bellman equation associated with a policy 7 is

Qh(s,a) =ra(s,a) + PuViii1 (s, a)
Vi (s) =Q (s, mn(s))
for any (s,a) € S x A, h € [H]. Since the action space
and the episode length are both finite, there always exists an
optimal policy 7* such that V" (s) = sup, V7 (s) for any
s € 8, h € [H], with Bellman optimality equation as

Q;L(S7 (1) :Th(sv CL) + IFDh‘/h’,(+1 (55 a)
Vi (s) = ma Qf (5.0
ae

for any (s,a) € S x A,h e [H].

The structural assumption we make in this paper is a linear
structure in both transition and reward, which has been
considered in (Yang & Wang, 2019; Jin et al., 2020; Zanette
et al., 2020a). The formal definition is as follows.

Definition 3.1 (Linear MDP). A MDP M =
{S, A, H,{Py}n,{rn}n} is a linear MDP with a known
feature mapping ¢ : S x A — R, if for any h € [H],
there exist |S| unknown d-dimensional measures
w, = (un(1),...,un(|S])) € RISl and an unknown
vector @, € R?, such that for any (s,a) € S x A, we have

Ph(' | S’a’) = <¢(57a)’/~1‘h(')>7 rh(sva) = <¢(S’a)79h>'

We make the following assumptions, similar to existing
literature (Jin et al., 2020; Agarwal et al., 2019). Specifically,
for any h € [H], (i) sup; , [¢(z,a)l2 < 1, (i) |ppv]2 <
V/d for any vector v € RIS with ||[v]|,, < 1, (iii) 042 <
W, and (iv) rp(s,a) € [0,1] for all (s,a) € S x A.

In this paper, we focus on the setting where the reward func-
tion {7y} he[rr]» i-6- {On }ne[z) is known, but our algorithm
can readily be extended to handle unknown rewards.

Learning Protocol In every episode k, the learner first
proposes a policy 7% based on all history information up
to the end of episode £ — 1. The learner then executes
7TI’: to ge]?erkate a single trajectory 7% = {sk af}L  with
af = 7wF(sy) and sf.; ~ Pu(:|sF,al). The goal of the
learner is to learn the optimal policy by interacting with the
environment during K episodes. For the k-th episode, the
initial state s is picked by the adversary and the optimal
policy will minimize the cumulative regret over K episodes:

Regret(K) = Y [Vi'(s1) = V™ (s1)].
k=1

4. Strategic Exploration in Linear MDP

Section 4.1 illustrates the standard ways of strategic ex-
ploration in linear MDPs in existing works, i.e., optimistic
value iteration with parameters estimated by linear ridge
regression. Next, we point out in Section 4.2 barriers to
minimax optimality in existing algorithms, which also helps
explain our algorithm design Section 5.

4.1. Optimistic Learning in Linear MDPs

Optimistic learning evolves in an episodic fashion. In
episode k, the agent first estimates unknown parameters
of the linear MDP by historical data up to episodes k — 1.
One standard approach is estimating the parameter wj =
0, + p, Vi1 by linear ridge regression, as LSVI-UCB in
(Jin et al., 2020) and its variants in (Wang et al., 2020b;a),
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since the optimal Q function Q}: (s, a) = (W}, ¢(s,a)) ac-
cording to Proposition 2.3 in (Jin et al., 2020). Subsequently,
an optimistic Q function Q5 in Eq. (2) is constructed
with the learned parameter wy, ;, and the exploration bonus
Ble(, )l AL . The agent then follows a greedy policy 7"

of Qp,p to 1nteract with the environment and repeat the
above procedure in the next episode.

We illustrate two major steps of linear ridge regression and
the construction of the optimistic Q function below.

Linear Ridge Regression To estimate the optimal w},
the following regularized least-squares problem is proposed:

k—1

min > [Vine1(shir) — @' d(sh, ap)l” + Alwl3 (1)

d
weR ]

The closed-form solution to Eq. (1) is

Wi = Z

where App = Zl 1 d)(sh’ah)(){)(sgﬂail)—r
Vie.n(+) is given in Eq. (3).

sha ah Vk,h+1(32+1)

+ A, and

Optimistic Estimator wy, ;, is then used to build an op-

timistic state-action function in Eq. (2) with exploration

bonus 3[¢(-,-)| ,-1 to encourage exploration, and opti-
k,h

mistic value function is given in Eq. (3) as well. Notice that
these two functions are built in a backwards fashion from
stage H to 1, such that named as optimistic value iteration.

Qrn(s ) =(wrn, &(-,-)) + Blo(:, ')HA;}h 2)
Vien(+) :I&%Qk,h('aa) 3)

In particular, denote the optimistic confidence set Cy, j, :=
{w | » < B} such that Qpn(-,-) =
maxgec, ,{w, @(-,-)). Notably, confidence set Cy,;, is an
ellipsoid centered at w k,h, With shape parameter Ay, 5 and
radius [ (usually named as the exploration radius). It can
be proved that with high probability, w} € Cj ;, by using
self-normalized tail inequalities for vector-valued martin-
gales, e.g., Theorem 1 in (Abbasi-Yadkori et al., 2011), used
broadly in the analysis of linear bandits or RL with linear
function approximation. Consequently, functions in Eq. (2),
(3) obtains optimism in high probability.

4.2. Barriers to Minimax Optimality

The above optimistic learning based value iteration is a com-
monly adopted paradigm of RL with linear function approx-
imation in existing works, e.g., (Jin et al., 2020; Wang et al.,
2020b;a). However, the best-known regret upper bound
for linear MDPs is 6(\/ H3d3T) by LSVI-UCB algorithm

in (Jin et al., 2020), while the best known lower bound is
Q(Hd\/f) according to (Zhou et al., 2021). As shown in
Section 6, the lower bound is tight. We analyze where the
V/Hd gap comes from and then propose corresponding so-
lutions, which immediately sheds light on designing the
efficient LSVI-UCB™ algorithm in the next section.

4.2.1. OVERLY AGGRESSIVE EXPLORATION

The tradeoff between exploitation and exploration is a cen-
tral task for RL algorithms, implemented by designing ex-
ploration bonuses in optimistic learning. The current v/ H
gap stems from the overly aggressive exploration, which
means that the current exploration radius 5 = O(Hd) in
existing works, e.g., (Jin et al., 2020; Wang et al., 2020b;
Ayoub et al., 2020) is too large and leads to insufficient
exploitation. The underlying reason remains that a bonus
with O(H d) radius is intrinsically Hoeffding-type since it
has the order of the magnitude of the considered martingale
difference sequence (MDS). We prove that a Bernstein-type
bonus, based on the variance of the MDS, combined with the
Law of Total Variance (LTV) (Lattimore & Hutter, 2012),
can reduce one \/ﬁ factor of regrets in linear MDPs. The
motivation for this improvement comes from prior works
(Azar et al., 2017; Jin et al., 2018; Zanette & Brunskill,
2019) for tabular MDPs, which succeeded in achieving vVH
regret reduction by introducing a Bernstein-type bonus. For
linear mixtures MDPs, UCRL-VTR™ in (Zhou et al., 2021)
firstly introduces a Bernstein-type bonus and also achieves a
vVH regret reduction. Howeyver, a direct adaption of UCRL-
VTR in linear MDPs will not improve the regret due to the
extra cost of building a uniform convergence argument.

4.2.2. EXTRA UNIFORM CONVERGENCE COST

Introducing a e-covering net is a common approach to
build a uniform convergence argument over a function class.
Many algorithms for RL with linear function approximation
achieve polynomial sample complexity with this approach.
However, this brings extra dependency on d in the regret, as
presented in prior analysis, e.g., LSVI-UCB in (Jin et al.,
2020) and its variants in (Wang et al., 2020bsa). Specif-
ically, when bounding the deviation term (P — P)V, the
self-normalized tail inequality cannot be applied directly
since V' is not well-measurable. Prior works fix a value
function V' (-) € V, where V is the function class contains
all possible ‘A/ and build a uniform convergence argument
by taking uniform bound over all functions in the e-covering
net Jys of V. In this way, a self-normalized bound concern-
ing V' can be established (refer to proof of Lemma C.8 in
Appendix for details). However, the covering number of N
highly depends on the feature space dimension, resulting
in extra dependency on d in the regret. We propose a novel
technique of bounding the deviation term by dominant term
(P — P)V* and the correction term (P — P)(V — V*) sep-
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arately, to remove the extra dependency on d. Note that
bounding the correction term is also required for RL al-
gorithms in tabular MDPs to achieve minimax optimality.
However, adopting this idea to linear MDPs is nontrivial
since we need to build the self-normalized bound for vector-
valued martingale other than the well-studied scalar bound
in tabular MDPs.

5. Optimal Exploration for linear MDPs
Algorithm 1 LSVI-UCB™ for Linear MDPs

Require: Regularization parameter A, B B

I: for steph = H,...,1do
2: AL}“AL}L «— )\I, By < 0
3: end for
4: ko —0
5: for episode k = 1,..., K do
6 Virrs1(), Vi H+1( ) <0
7. forstep h = H,...,1// Optimistic value iteration do
8: if there exists a stage ' € [H] such that
det(/A\k,h/) =2 det(f\ko,h/) then
9: Qk.n() < min{ry (-, -) + <ftk WV kht1s
¢C )+ Bl )a 1 s Qurnl-s-) H)
10: ko < k // Last updatmg eplsode
11: else R
12: Qi () < Qre—1,n(+)
13: end if _
14: Qk’,h('a ) = rh('v ) + <ﬁ’k,hvk,h+1’¢('7 )> -
Bk“‘ﬁ('; ')H;\Zlh /I Pessimistic Q function
15: Vien(-) «— maxaes Qrn(-, a)
16: Vien(+) < max{maxsea Qk,n(-, a),0}
17: 7 (-) < argmaxgea @(-,a)
18:  end for

19:  Receive the initial state s¥.

20. forsteph=1,...,H do

21: af «— mr(sf), and observe s§_ | ~ Py (-|sf, af).
22: Ok,h —

\/HlaX{fL Hd3Ey, p, [@k,hf}k,h-&-l](s i)+ Uknt E
k

230 Ay Apn +35.0(sh, af)d(sh, af)T
24: if ||c~r_1 (sh,ah)HA L < 1/(H3d®) then
25: Sk,h < vH

26: else

27: Sk,h < H2\/d5 /1 Enlarge ¢, if necessary
28: end if

29: Gk’h <«

\/max{glih, dBHEk,h, [@k,h‘/}k,h-kl](sza aﬁ) + Uk,h}

30: Apr1,n < Ay, h + 00 0(sk, af)@(sh,ap) T
PSR .

31 Firn < A +1 h 2ai1 05,1, P(Sh aj,)8(sh 1) "

32:  end for

33: end for

In this section, we present the proposed LSVI-UCB™ algo-

rithm (Algorithm 17), where the optimistic value iteration is
performed in Lines 5-18, and the learned policy is executed
in Line 21. The remaining parts of Algorithm 1 are respon-
sible for estimating parameter p,;, by linear weighted ridge
regression. Specifically, the estimated variance is given in
Line 29, whose lower bound is controlled in Lines 24-28,
and the solution to the regression is given in Line 31.

LSVI-UCBT is an optimistic algorithm similar to existing
works (Yang & Wang, 2019; Jin et al., 2020; Ayoub et al.,
2020), but upgrading the Hoeffding-type bonus to a carefully
designed Bernstein-type one. The exploration radius in
LSVI-UCB™ is proportional to the standard deviation of
the optimal value function conditioned on some state-action
pair, which accounts for two key novelties of LSVI-UCB™:

(1) We replace the linear ridge regression in prior works
(Yang & Wang, 2019; Jin et al., 2020; Ayoub et al., 2020)
with a carefully designed weighted version such that LTV
can be applied. Note that the linear weighted ridge regres-
sion estimator was originally built for linear bandits with het-
eroscedastic noises, e.g., (Lattimore et al., 2015; Kirschner
& Krause, 2018). Besides, the regression is performed to
estimate pp,, i.e., transition matrix, instead of estimating in-
direct variables, e.g., w;’; of LSVI-UCB in (Jin et al., 2020).

(i1) A variance estimator, based on the estimated parameter
Iy, 1, is built for the optimal value function to determine the
weights in regression. UCRL-VTR™ in (Zhou et al., 2021)
also introduces weighted ridge regression for linear mixture
MDPs, and weights are determined by variances of the
constructed optimistic value function. However, the weights
in LSVI-UCB™ are very different from those in UCRL-
VTR™, since our variances are estimated with respect to the
optimal value function, not the constructed value function.

5.1. Linear Weighted Ridge Regression

Denote &(s) € RISl as a one-hot vector that is zero ev-
erywhere except that the entry corresponding to state s is
one, and define €} := P,(- | sf,af) — 8(sf,,). Since
[eﬁ | Fepn] = 0, 8(sf,,) is an unbiased estimate of

Pn(- | sk, af) = uhtb(sh,ah) Thus, p;, can be learned
via regression from ¢ (s}, afy) to 8(sf ;). In addition, sam-
ples are normalized by the estimated standard deviation
Ok,n- Thus, the estimated parameter i, ;, in Line 31 of
Algorithm 1 is the solution to the following weighted ridge

2 In our original version (Hu et al., 2022), there is a techni-

cal issue in building the over-optimistic value function Vi 5 (-)
(pointed out by (He et al., 2022; Agarwal et al., 2022)) such that
the theoretical results do not hold. In this version, we build on
(He et al., 2022) by replacing the over-optimistic value function

Vin () with the “rare-switching” value function first proposed in
(He et al., 2022). In this way, our result still achieves minimax op-
timal regret for linear MDPs, with minor modifications of constant
terms, compared to our original version.
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regression problem:

k—1
mingcgaeis D) | [ bl af) — 8(she )]0 | + Alul
i=1

where || - | 7 denotes Frobenius norm. The solution is
k—1
~ A1 P PYR A i T
Hipn = Ak,h Z Oi,h¢(827a2)5(52+1) ) “4)
i=1

where Ay, = Y0} G, o(sh, ah) (s}, ap) " + AL Thus,
the estimated transition probability is denoted as

B ~T

Prn(- | s,a) = by ,@(s,a)
for any (s,a) € S x A. After estimating the transition

matrix, Lines 8-13 in Algorithm I constructs an optimistic
state-action function, which is equivalent to

~

Qk,h('v ) = min{ max Th('ﬂ ) + <“‘7ko,h+17 ¢(7 )>7 H}7

pECK,h

where kq is the updating episode and the optimistic confi-
dence set is given by

~

Cron = {m: [ (1 = By ) Vions1lz,, , <5}
and B is the exploration radius. The construction of the
optimistic state-action function in Lines 8-13 and the up-
dating condition in Line 8 of Algorithm 1 are proposed by
(He et al., 2022), which utilize a “rare switching” mech-
anism (detailed in Lemma F.8 and F.11 in Appendix) to
ensure a small covering number of considered optimistic
value function classes. This “rare switching” mechanism
avoids the issue of building the over-optimistic value func-
tion in our original version (Hu et al., 2022). In addition,
the pessimistic state-action function in Line 14 is equivalent
to

Qi) = ) Vi1, (),

min (-
peCr,n

where the pessimistic confidence set is

Crow = A{p: [( = By ) Viniilg, , <5}
Subsequently, optimistic value function IA/kh() and pes-
simistic value function ‘7th(.) can be defined. Note that
IA/k}h(-) in Algorithm 1 is strictly decreasing in k, which
ensures that the optimistic value function approaches the
optimal value function V}*(-) almost surely. Besides, the
pessimistic value function ‘v/k n(+) is required for estimating
the variance upper bound later.

5.2. Variance Estimation

After estimating the transition matrix in Eq. (4), LSVI-
UCB™ estimates the variance of the optimal value func-
tion [Vth (8%, ak) and the variance of sub-optimality

gap [Vh(Vk7h+1 — V¥ )](sf, af). This is a major differ-
ence with prior UCRL-VTR™ algorithm in (Zhou et al.,
2021) for linear mixture MDPs, which only estimates
the variance of the constructed optimistic value function
[Vth h+1](5h,a’,§) The purpose to estimate these two
variances remains that we utilize Bernstein self-normalized
tail 1neguahty in Theorem 7.1 to bound the dominant
term [(Py,, — Pn)V;¥ 1(sF, af) and the correction term
[(I@hh fIP’h)(thH — V5 1)](sf, ay) separately to remove
the extra dependency of regrets, such that we need to esti-
mate these two variance, which are illusated below.

Variance of Optimal Value Function We first consider
the case where the transition matrix and optimal value func-
tion V}* () were given. In this case, the variance of the
optimal value function is given by

N 2
[ViVial(shs ai) = PrVilia ™ (shy ai) — [PaVifia (s, ap)]?

However, only empirical estimation fiy, ;, and optimistic

value function V} j, are obtainable, which means we only
have the empirical variance of the optimistic value function:

[@k,h‘?k,thl] (357 ah)

~[Pen Vi1 (sh, al)o.m]*

]Pk th h+1(327 ai)[o H?]

(&)

To ensure the accuracy of the estimation, we introduce

an offset term Uy, , to guarantee that [V, V¥, | ](sf, af) —

[@k,hf/k,hﬂ](sﬁ, al)| < Uy, with high probability. More-
over, the exact form of offset term Uy j is specified in
Lemma 7.5, which requires accessing the pessimistic value
functions as detailed in Lemma C.12 in Appnedix.

Variance of Sub-optimality Gap In particular, we try to
build a upper bound for the variance of the sub-optimality
gap, which is given as

[Va (Vi1 = Vi) (sh, af)

(B (Do — Vit )20 (s 0b) — [(BPinn — Vi) (shoal) |
[P (Viensr — Vi )21, af) < HIPL(Vinar — Vi ) (s) af)
H[Pp(Vigsr — Va1 (s, af)

/A

VA

where the second and last inequalities holds by the opti-
mism and pessimism of Vk h+1 and Vk ht1s respectlvely
Thus, it suffices to upper bound the deviation [IP’h(V;~c hil —
Vk, n+1)](s¥, a¥). In addition, the upper bound of the vari-
ance of the sub-optimality gap is denoted as E, 5, specified
in Lemma 7.5.
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Putting two variances together, the weight & 5 in Algo-
rithm 1 is given by

Ok,h = \/max{qg)h, dEkp, [VienViens1](sh, af) + Ugn},

which is the maximum over the weight lower bound ¢y, 5,
the variance upper bound of the optimal value function, the
variance of the sub-optimality gap with a factor d scaling.
Here i ;, controls the lower bound of 3k7 n and is dynam-
ically determined in Lines 24-28. In particular, we try to
keep the magnitude of the considered MDS to be small by
adaptively enlarging ¢, ;,, which is detailed in Remark 7.4.

6. Main Results

This section presents the results of the statistical, space, and
computational complexities of the LSVI-UCB™ algorithm.
In particular, LSVI-UCB™ reaches nearly minimax optimal
regret in linear MDPs, while the space and computational
complexities are no worse than prior works.

6.1. Statistical Complexity

We first present the regret upper bound of LSVI-UCB™ in
Theorem 6.1.

Theorem 6.1 (Regret Upper Bound). Ser A\ = 1/(H?+/d).
Then, with probability at least 1 — 106, the regret of LSVI-
UCB™ is upper bounded by

Regret(K) =0 (Hdﬁ + H6d9) : ©6)

whereT = KH.
Proof Sketch. We prove the result conditioning on the con-
clusion of Lemma 7.5. Initially, with the standard regret
decomposition, we can show that the total regret is bounded
by the summation of the exploration bonus, i.e.,

K H

Z Z 5”@5 Shvah)”A L

k=1h=1

K H
~ kE k
=30 X Bowalaiialshablas
k=1h=1 , @

Regret(K

O(VHT+evT)

where the second inequality holds by Cauchy-Schwarz
inequality and c is a constant. The summation of
1G5 n(shs af)I1% o can be addressed by Elliptical Poten-

tial Lemma (Lemma E.5 in Appendix), and the summation
of & ak’ ;, can be bounded by

K H K H
~2 2
PIPIAEDIPIT

k=1h=1 k=1h=1

K H
+ Z Z [dEk,h + Uk,h]

k=1h=1

K H
+ Z Z V;g th h+1 sh,ah) O <HT + C\/7>
k=1h=1

where the first inequality holds by definition of &y s,
and the second inequality holds by 2211 ZhH=1 g,f, h <
6(H T) due to the conservatism of elliptical potentials,
S S [dEkn+Uss] < O(eV'T) due to the Elliptical
Potential Lemma, and Zszl Zthl [i\]k;,hf}le_Arl:l (sk,af) <
O(HT) due to the LTV. Besides, the exploration radius
B = 5(\/&), which determined by the upper bound of

(]P’k — ]P’h)Vk hH(s’,?L, ah) detailed in Section 7.3. The
full proof is given in Appendix D. O

Theorem 6.1 is proved under the event that the optimistic
confidence set C p, holds, which is built in Lemma 7.5.
In addition, we find that the exploration radius B of the
optimistic confidence set Cy, j, determines the sharpness of
the final regret, as shown in Eq. (7) .

Remark 6.2. When’ T > H'0d'S, the regret in Eq.
(6) can be simplified to O(Hd~/T), which improves the

%) (\/H3d3T) regret of LSVI-UCB (Jin et al., 2020) by a

factor of v/ H d. Moreover, our algorithm design an analyt-
ical tools including Theorem 7.1 and Lemma 7.3 in next
sections can further improve the regret bound of UCRL-
\iTRJr in (Zhou et al., 2021) for linear mixture MDPs to
O(Hd+/T) from existing O(v/H2d?T + H3dT), such that
it is minimax optimal up to logarithmic factor without large
dimension assumption that d > H in (Zhou et al., 2021).

Lower Bound We formalize a linear MDP instance in Ap-
pendix E to establish an Q(Hd+/T) regret lower bound of
linear MDPs. This linear MDP instance is firstly proposed
in Remark 23 in (Zhou et al., 2021), which shares the same
regret lower bound of a linear mixture MDP instance. This
class of MDP is hard due to the intrinsical sparsity of reward
and indistinguishability of large action space, which can be
regarded as an extension of hard instances in linear bandits
literature (Dani et al., 2008; Lattimore & Szepesvari, 2020).
According to Theorem 8 in (Zhou et al., 2021), linear mix-
ture MDPs have regret lower bound of Q(Hd+/T). Thus
linear MDPs have the same regret lower bound. The lower
bound, together with the upper bound of LSVI-UCB™ in
Theorem 6.1 show that LSVI-UCB™ is minimax optimal up
to logarithmic factors when 7' > max{H*d'?, H°d%}.

6.2. Space and Computational Complexities

As stated above, LSVI-UCB™ reaches minimax optimal re-
gret up to logarithmic factors, which is also computationally

3Large-sample regime conditions are required in many RL al-
gorithms to obtain satisfactory statistical complexities, e.g. UCRL-
VTR™ in (Zhou et al., 2021) requires T' > d* H? + d*H®.
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efficient. In particular, the space and computational com-
plexities of LSVI-UCB™ are briefly stated below, which are
both the same as LSVI-UCB in (Jin et al., 2020).

Space Complexity Although fi, , € RIS and |S]|
can be infinitely large, we do not store it explic-
itly, as Algorithm 1 only utilizes indirect variables
k=1 ~ i i i

Hk nV = Ak hZz 1 01}3 (s} ap,)V (sh41) Where V' €
{Vk hal V,C hat> Vi h+1} In episode k € [K], Algorithm 1
only stores iy , V, Ak,h, Ak,h, Ok, h» Ok,p forall h e [H],
and {p(s}, a)}aea forall (k', h) € [k] x [H], which means
LSVI-UCB™ requires O(d?H + d|.A|T) space.

Computational Complexity Assume fi;, , V' is given for
some V e {V, h+1,‘7,fh+1,1v/k h+1}, then each evalua-
tion of V() takes O(d?|.A|) operations. Thus, calculating
By, 1,V takes O(d?|A|) K operations. Besides, Ay, oA
can be computed by Sherman-Morrison formula (Hager,
1989) with O(d?) operations and other steps take less
operations. Thus, LSVI-UCB™ has a running time of
O(d?| A|KT), which is computationally efficient since its
i i , and does not
depend on |S|, which can be possibly infinite.

7. Mechanism Towards Minimax Optimality

In this section, we highlight our technical contributions
in building the sharp optimistic confidence set Ck nh- We
first present two novel analytical tools, a sharp Bernstein
self-normalized tail inequality for vector-valued martingales
in Section 7.1, the conservatism of elliptical potentials in
Section 7.2. Together, these two analytical tools remove
the additional dependency of regret on H in the regret of
the LSVI-UCB™ algorithm. In addition, we also upper
bounds the correction term of the form (IP’ IP’)(V V*)
to avoid extra cost from the covering net such that the addi-
tional dependency of regret on d is removed as well. Conse-
quently, the sharp confidence set Ck p 1s built in Lemma 7.5
in Section 7.3. These technical contributions together en-
able LSVI-UCB™ to achieve nearly minimax optimal regret
and have the potential to improve other statistical results of
algorithms for RL with linear function approximation.

7.1. Sharp Bernstein Self-normalized Bound

Most existing self-normalized concentrations used in prior
works for RL with linear function approximation (Jin et al.,
2020; Wang et al., 2020b;a; Ayoub et al., 2020) are all
Hoeffding-type, i.e., they consider sub-Gaussian noises.
Our self-normalized bound below considers sub-exponential
noises, which is a Bernstein-type one.

Theorem 7.1 (Bernstein self-normalized bound). Let
{G:}32., be a filtration, and {x, n: }1=1 be a stochastic pro-
cess such that x; € R is G,-measurable and n € Ris

Gi+1-measurable. Define Z; = \1 + 25:1 a:,a:lT fort =1
and Zo = AL If |x¢||2 < L, and 0, satisfies E[n, | G¢] = 0,
E[n? | Gi] < 0% and  |n; - min{1, HthZt—le < R for
allt = 1. Then, for any 0 < § < 1, with probability at least
1 — 6, we have:

i=1

vVt > 0,

z!

Proof. Please refer to Appendix B. O

Remark 7.2. The proof of Theorem 7.1 in Appendix B
shows that bounding the self-normalized vector-valued mar-
tingales is equivalent to bounding a scalar-valued MDS
{m: - min{1, \|a:tHZ;11}, Gi+1}, where 7, is scaled by the

factor of min{1, \|thZ:1}. In particular, ”thzt—jl =

/2] Z7 Y 2, is denoted as the elliptical potential, which is

common in online learning literature (Cesa-Bianchi & Lu-
gosi, 2006). Notice that Elliptical Potential Lemma shows
that min{1, |@¢| ;1 } can be roughly regarded as an atten-
uated sequence. Theorem 7.1 looks similar to but is sharper
than Theorem 2 in (Zhou et al., 2021), because it pay extra
attentions on elliptical potentials Ha:t||z;11. However, the

scaling factor min{1, |z||,-: } is crudely deflated to 1 in
t—1

Theorem 2 in (Zhou et al., 2021), such that the attenuation of
the MDS is neglected, which is highlighted in Lemma D.7.

7.2. Conservatism of Elliptical Potentials

Notice the self-normalized bound in Theorem 7.1 will deter-
mine the order of exploration radius 8. We try to keep the
second term R, the magnitude of the MDS, in Theorem 7.1
smaller than the first +/d by utilizing the conservatism
of elliptical potentials. Specifically, the following lemma
characterizes the conservatism of elliptical potentials, i.e.,
elliptical potentials are usually small. This lemma is firstly
proposed at Exercise 19.3 in (Lattimore & Szepesvari, 2020)
for case ¢ = 1, and we generalize it to case ¢ > 0.

Lemma 7.3 (Elliptical Potentials are Usually Small). Given
A > 0 and sequence {a}t}il < R with |x¢||, < L for all
t € [T), define Zy = NI+ Y'_, xz] fort > 1 and
Zo = AL The number of times ”thzt*11 > cis at most

376110 1+ Liz
log(1 + ¢2) & Mog(1 + ¢2)

forany t € [T, where ¢ > 0 is a constant.
Proof. Please refer to Lemma D.7 in Appendix. O

On the one hand, for some stage h € [H], the noise
M = ﬁg}lVTefL for some value function V' as detailed
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in Appendix C. On the other hand, in Theorem 7.1, R is
the absolute bound of [n, - min{1, |7 hd)(smah)HA 1 }|

Lemma 7.3 reveals that R is intrinsically small since the
elliptical potential |7, hq&(sh,ozh)||A,1 is small in most
’ k,h

episodes. In addition, we only need to enlarge the lower
bound of Gy, .i.€., si,n When |5, 7, (sf, af ) |3 o is large
such that R can remain small uniformly, wh1ch 1s 'detailed
in the following remark.
Remark 7.4. Lines 22-29 of Algorithm 1 ensure the fol-
lowing facts for any (k h) € [K] x [H] by introducing
indicator variable ng W o(sh,ai) | z-1

i,h

1/(Hd?),
then ¢ 5, = v H such that 5, , = ;. We can prove that
the elliptical potential |5} } ¢(s,, al)| 41 is small;

’ k,h

(ii) Otherwise, s, 5, = HVd3, such that 5 ;, > Hvd3. In
this case, the R is still small since &y 5, is large.

(i) In most cases, we have |5, ¢(s},, GZ)HT\;}L <

Notice that always enlarging <, 5, for any k € [K] is a simple
method to keep R small, but contributing to final regret lin-
early since it is an additive term in 25:1 ZhH:1 Ok, Never-
theless, the enlarging operation in case (ii) only contributes
an additive constant term to the regret, since the elliptical po-
tential &, }, ¢ (s}, ap)lx o is small in most episodes such
that the enlarging operatlon in case (ii) happens rarely.

As a consequence, the R in Theorem 7.1 can be controlled
to be smaller than the ov/d in the LSVI-UCB* algorithm,
such that the exploration radius 3 in LSVI-UCB™ is O(Wd).
However, analog Bernstein self-normalized bounds, such as
Theorem 2 in (Zhou et al., 2021) and Theorem 1 in (Faury
et al., 2020), cannot lead to such exploration radius in the
SVI-UCB+ alggrithm, while that of Theorem 2 in (Zhou
etal., 2021) is O(\/E + \/ﬁd2), and Theorem 1 in (Faury

etal., 2020) is O(v/ HV/d5).

7.3. Building Confidence Set with Correction Term

This subsection explains critical steps of building a sharp op-

timistic confidence set Cy, j, with the correction term. Specif-

ically, the exploration bonus [ ¢(sf, af)| 11 is the upper
k,h

bound of the deviation term [(Py 5, — Pp) Vi ny1](sk, ak),

which is the basis of optimistic learning. Specifically, the

deviation term can be decomposed by triangle inequality as
the sum of dominant term and correction term:

[Py = Pu) V1155, ap)

Dominant term with respect tth 1

+ [(Prn — Po) (Vienr1 — Vi )1(sE, af)
Correction Term

<I(k = B Vi la,, Ik ab)la

+ (= B4 ) (Vi g1 — fﬂ)l\ﬁk hH(b(s’,fb,a’fL)HA;lh

5 Hd)(shaah)HA—l +5(2)H¢’(5h ah)HA
B||¢(3h7ah)“f\

-1,
k,h

where the first inequality holds by Cauchy-Schwarz inequal-
ity, the second inequality holds since

C =i 1~ B ) Viala,, <BY)

5(2 ~ ~ ~
CO = I = Baon) (Vir = Vi )la,, < B2},
and the last equality holds since 3 = B(l) + 3(2). In the

following, we briefly illustrate how to use Theorem 7.1 to
build confidence sets é\,(el})L and CA(Q) . Initially, by

278 VHA S HE zh Sh’ah €h HA;}}L

®)
for some fixed function V' in Lemma F.9, building a confi-
dence set with respect to V' is equivalent to building a self-

k—1 A i N T
26 (s} ai el Viao

| (B —

normalized bound for || };;—) 7,

Building C We build confidence set CA,(C 5, by applying
the Bernsteln self—normahzed inequality in Theorem 7.1
with dynamic control of MDS magnitude, highlighted in Re-
mark 7.2. Thus, Uy, j, is specified in Lemma 7.5 to guarantee
that &, 5, upper bounds V, V¥, | (s§, af), and ¢ p, is set dy-
namically. Besides, the uniform convergence argument by
covering net in (Jin et al., 2020; Wang et al., 2020b;a) is not
required, since now V' = V}*_, in Eq. (8) is a fixed function
and there is no measurability issue. Consequently, we get
B — O(v/d), which is detailed in Lemma C.15.

Building C}):

control of MDS magnitude to build C ,(c 5, as well. Similarly,
Ey, 1, is specified in Lemma 7.5 to guarantee that & Ok,h Up-
per bounds [Vh(‘//\vk’h+1 — VEDI(sE, af), and g, is set
dynamically to keep the MDS magnitude R in Theorem 7.1
small. Since now V' = Vj 41 — Vh*+1 in Eq. (8) suffers
from the measurability issue, a uniform convergence argu-
ment by covering net is still required, which bring extra
dependency on d in the exploration radius B (2). That is why
we enlarge Fy, j, with a d factor in &y p,.

We apply also Theorem 7.1 with dynamic

Putting everything together gives the following key technical
lemma that builds the sharp optimistic confidence set Cy, ,.

Lemma 7.5. Set B = B(l) + 3(2), then there exists an
absolute constant ¢ > 0 such that for any § € (0, 1), with
probability at least 1 — 70, we have that simultaneously for
any k € [K] and any h € [H],

y € Cin 0 Crons
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and ‘[i\]k,h‘/}k,h-&-l](sﬁai) — [thh*+1](5]}i,alﬁ)} < Uk,h,

[Vi(Viont1 — V& D(sE, ak) < Egp, where B0, 3,
Ui.h, By, are specified in Lemma C.17 in Appendix.

Proof. Please refer to Appendix C.4. [

8. Conclusion

This paper presents a computationally and statistically ef-
ficient algorithm, LSVI-UCB™, which builds on linear
weighted ridge regression and upper confidence value itera-
tion with a Bernstein-type exploration bonus. LSVI-UCB*
reaches minimax optimal regret bound up to logarithmic
factors for linear MDPs. Our sharp result builds on a novel
Bernstein self-normalized bound with the conservatism of
elliptical potentials, and refined analysis of the correction
term, which serve as new analytical tools for RL with linear
function approximation.
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In the appendix, we present some additional results and supporting materials to supplement the statements, theorems and
proofs in the main papers. There are 6 sections in appendix:

» Appendix A presents additional comparisons with related works.

* Appendix B presents the proof of our proposed sharp Bernstein tail inequality for self-normalized vector-valued
martingales.

» Appendix C presents the construction of several high probability confidences sets.

» Appendix D presents the former proof of the regret upper bound of LSVI-UCB™* algorithm, with conclusion given in
Theorem 6.1.

* Appendix E constructs a hard-to-learn MDP to build a regret lower bound for linear MDPs.

* Appendix F presents auxiliary lemmas necessary for proofs in above sections and important properties that will be
helpful in algorithm design.
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A. Additional Comparisons of Related Works

Table 2 serves as a more complete table compared to Table 1 in the main paper, which lists some representative works
in RL with linear function approximation. The top part of Table 2 lists representative works for the linear MDP and its
generalizations and the buttom part is for the linear mixture MDP and its generalizations.

Table 2. Theoretical results on RL with linear function approximation, where T denotes that rewards are adversarial, and d}, is the
dimension of the feature mapping at the h-th stage within the episodes and K is the number of episodes.

Setting Algorithm Technique Regret

Linear MDP OPT-RLSVI (Zanette et al., 2020a) Hoeffding+Covering ~ O(H?d*v/T)
Linear MDP LSVI-UCB (Jin et al., 2020) Hoeffding+Covering 5(\/ H3d3T)
Linear MDP LSVI-UCB™ (this paper) Bernstein+Covering é(H dvT)
Linear Q Function LSVI-UCB* (Wang et al., 2020b) Hoeffding+Covering 5(\/@ )

Low Bellman Error ELEANOR (Zanette et al., 2020b) Hoeffding+Covering 5( hH:1 dpnVK)
Bounded Eluder Dimension ~ F -LSVI(d) (Wang et al., 2020a) Hoeffding+Covering ~ O(poly(dH)~/T)
Linear Mixture MDP UCRL-VTR (Jia et al., 2020; Ayoub et al., 2020)  Hoeffding 5( H3d2T)
Linear Mixture MDP UCRL-VTR™ (Zhou et al., 2021) Bernstein O(VH2&T + H3dT)
Feature Space MatrixRL (Yang & Wang, 2020) Hoeffding O(H?d1log TV/T)
Linear Mixture MDP' OPPO (Cai et al., 2020) Hoeffding O(Vd?H3T)

From Table 2, we can find that existing algorithms for the linear MDP and its generalizations all use a classical Hoeffding
self-normalized bound such as Theorem 1 in (Abbasi-Yadkori et al., 2011) with the covering net argument, while our work
introduces a Bernstein self-normalized bound with a covering net argument. Moreover, building a covering net argument in
our work does not brings extra dependency on feature space dimension d since we only consider covering net argument in
bounding the correction term which can be made small.

As for the linear mixture MDP and its generalizations, the covering net argument is not required due to the structure of
the linear mixture MDP. In addition, prior works (Yang & Wang, 2020; Jia et al., 2020; Ayoub et al., 2020; Cai et al.,
2020) utilize Hoeffding self-normalized bound to build confidence sets, while (Zhou et al., 2021) consider the Bernstein
self-normalized bound for the first time in the setting of linear mixture MDP. Compared with regret bound of O(v/ H3d?T)

obtained in (Jia et al., 2020; Ayoub et al., 2020) for linear mixture MDPs, the regret bound 5(\/ H?d?T + H3dT) in (Zhou
et al., 2021) is better and a v/ H factor is further saved if d > H.

B. Sharp Bernstein Self-Normalized Bound

In this section, we prove the proposed sharp Bernstein tail inequality for self-normalized vector-valued martingales. Our
proof diagram is based on the proof of Theorem 1 in (Zhou et al., 2021), which is firstly proposed in the proof of Lemma 14
in (Dani et al., 2008). However, our Bernstein self-normalized bound is sharper than Theorem 1 in (Zhou et al., 2021) with
critical changes of the attenuation of the martingale difference sequence.

Specifically, {min{1, Hthzfll}}te[T] can be roughly considered as an attenuated sequence since we can prove
.

Zthl min{1, ||| Z_fl} = O(dlogT) by Elliptical Potential Lemma. On the contrary, min{1, HthZ‘jl} is deflated

to 1 in Theorem 1, (Zhou et al., 2021) such that the bound is looser than ours. In the following proof, we do not deflate
min{1, x| ,-: } to 1, and we take into account the elliptical potential x|, in our algorithm design, which is one of
t—1 t—1

the major contributions in this paper.

Firstly, we give the following definitions to simplifying notations during the proof.
Definition B.1.

t
dt = Z 581771,
i=1

Zy =il o1
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Wy = Hthz;ll ,

Bi :=8a+/dlog (1 + tL2/(d\)) log (4t2/8) + 4R log (4t2/5) ,
E=1{0<s<t Z, <Bs},

fort >1anddy =0,Zy =0,8y =0fort =0.
Measurability With the assumptions in Theorem 7.1, z; is G;-measurable and 7; is G;.1-measurable. Thus, w; is
G;-measurable, and d;, Z; and &; are G;1-measurable.

Our goal is to upper bound Z;. By definition of Z;, we have

Z7 = (dy—1 + fctﬂt)T Z; (di—y + )
=d/_\Z; o+ 2 2y + e 2
< th,l + 277tthZt_1dt,1 +77t2thZt_1wt

~~

I I

where the inequality holds since Z; > Z;_;.
Since Z; = Z;_1 + azta:tT , by the Sherman—Morrison formula (Hager, 1989), we obtain
Z;—llwtw;rzf—ll

-1 -1
Zt = thl - 1+ w2
t

, fort>1.

Subsequently,

] 77 ey 77 dy wiz] 77V d 2n /i A
11—277t<m;rzt_11dt—1_ t Hp—1ltby S 19 :27lt m;rZ;_lldt_l_ t ot Hr—1% _ tby Hp 19t

1+ w? 1+w? 1+w?
To—1 . _Tr—1
L=n? 2]z 2] — Ty Ly xixy Ly Ty — 2 (w? - wy _ i wy
S Rk 1+ w? AT 1w 1+ w?

Therefore, we have

t Trp—1 t 292

2nx) 2 di— 2002

Z <) Ui L%t > i s 9)
= 1+ w? i=11+w?

Now we try to bound the two summation terms on the r.h.s. of Eq. (9) in Lemma B.3 and Lemma B.4, respectively. Before
that, we present a uniform Bernstein bound required for proving Lemma B.3 and Lemma B.4.

Lemma B.2 (Uniform Bernstein Bound). Let {x;, F;} be a martingale difference sequence with Vi > 1, E (x; | Fi—1) = 0,
E (27 | Fic1) =02, Vi = 22:1 JJZ-. Furthermore, assume that P (|z;| < ¢ | Fi—1) = 1 forany 0 < ¢ < 0.

Then, for any § > 0, with probability at least 1 — 0, simultaneously for any t > 1, it holds that

t
2clog(2t?
Z d; < A/2V1og(2t2/6) + M_
i=1

Proof. By Freedman’s inequality in Lemma F.2, for any § > 0 and some ¢ > 1, with probability at least 1 — §/(2t?), we
y q y y p y

have:
2
d; < A/2V21og(1/8) + gclog(l/é). (10)

t
=1

7

Taking a union bound for Eq. (10) from ¢ = 1 to oo and using the fact that Z:C: 72 < 2 complete the proof. O
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Next, we bound the first summation term on the r.h.s. of Eq. (9) in Lemma B.3.

Lemma B.3. Under assumptions in Theorem 7.1 and Definition B.1, with probability at least 1 — 6 /2, simultaneously for
all t = 1 it holds that

2] 27 d; 2
LT iar b3

i=1

Proof. Define
2mix] Z; diy

5'—7
1+U}Z2 1—1

and we will give a uniform upper bound of Zle l; by Lemma B.2 below.

Firstly, forany 1 <14 <'¢,
szTZ;_lldz,l

E[: [ 6] = 1+ w?

Ei1E[n; |Gl =0

Besides, we have

2| @iz [Hdilez—l Z—,l] 2w, Bi
i— i— iMi—1 .
< 1 1+wi2 1 < w0 < 2min {1, w;} Bi—1 (11)

2£Ejzl__11dl_1
1+ w?

i—1

%

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to the definition of &;_1,
and the last inequality holds by algebra. Thus,

where the last inequality holds since { 57} 1s an increasing sequence.

Secondly, we also have
2
QIETZ d; 1
E[&Z |G R
Setdie <o (SR
< o2 Z [2min{1,wi}ﬁi_1]2
i=1

¢
< 40?62 Z min {1,w$}

i=1
< 80°B7dlog (1 + tL?/(dN))

where the first inequality holds since E [ 2| gl] < 02, the second inequality holds due to Eq. (11), the third inequality
holds since { BZ} 1s an increasing sequence, and the last inequality holds due to Lemma F.5.

Therefore, using Lemma B.2, simultaneously for all ¢ > 1, with probability at least 1 — §/ (4¢?), it holds that

o~

Z 4 < \/160263d10g (1 +tL2/(dN))log (4t2/5) + 2/3 - 2Rp, log (4t%/5)
i=1

s 4 160 dlog (1-+ 112/(d)) log (412/6) + ﬁt AR log? (467/5)

<B2+> (80\/dlog 1+ tL?/(d\)) log (4 t2/5) +4Rlog (4t2/§))
= 3ﬂt /4

where the first inequality holds due to Lemma B.2, the second inequality holds due to 2/|ab| < |a| + |b|, and the last
equality follows from the definition of ;. O
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Accordingly, the second summation terms on the r.h.s. of Eq. (9) is bounded in Lemma B 4.

Lemma B.4. Under assumptions in Theorem 7.1 and Definition B.1, with probability at least 1 — /2, simultaneously for
allt > 1 it holds that

i n;w; 2
7 7 < /8 /4
2 =Mt
=1+ w;
Proof. Define
e pfud
Clt+w? 1+w? ' 7"

We will give a uniform upper bound of 2271 l; by Lemma B.2, similar to Lemma B.3.

Clearly, for any 1 < i < t, we have E [¢; | G;] = 0. We further have that
¢ t 4,4
g2 ‘ gz _ Wi | Gi
P rre
t 2,,2
mw;
< R2 E () ;
; [1 + w? K ]
¢
< R252 wi2
h Hltw
< 2R*c*dlog (1 + tLQ/(d)\))

where the first inequality holds due to the fact E(X — EX)? < EX?, the second inequality holds since |r; - min {1, w;}|
R, the third inequality holds since E [n? | G;| < o2, and the fourth inequality holds due to the fact w?/ (1 + w?)
min {1, w?} and Lemma F.5.

<
<

Furthermore, using the fact that |7; - min {1, w;}| < R holds almost surely under filtration G;, we obtain

771'2“}1 2 . 9 . 5 )
T+u? < [n? - min {1,w?}| = |n; - min {1,w;}|* = R?,
and
2002 2,2
n;w; 7 W; 5
bl < |7 | FE |t | Gi| < 2R
. ‘14'%2 ‘ [1+wi2|gl]

Therefore, by Lemma B.2, simultaneously for all ¢ > 1, with probability at least 1 — 6/ (4t2), it holds that

i w? Z [ 2'@]*““%2 2dlog (1 + tL?/(dN)) log (412/5) + 4/3 - B* log (4¢*/5)

’L

2
wy
<o? Z; T +2Ro/dlog (1 + tL?/(d)N)) log (42/5) + 2R log (4% /5)

< 20%dlog (1 + tL?/(d))) + 2Rov/dlog (1 + tL2/(d))) log (4¢2/8) + 2R? log (4t%/5)
<1/4- (80\/E\ﬂog (1+ tL2/(d))) log (4t2/8) + 4R log (4t* /5))2
= B7/4

where the first inequality holds due to Lemma B.2, the second inequality holds due to E [7712 | Qi] < 02, the third inequality
holds due to the fact w?/ (1 + w?) < min {1, w?} and Lemma 12, and the last inequality holds due to the definition of
Bt O
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B.1. Proof of Theorem 7.1

Proof of Theorem 7.1. Consider the case when conclusions of Lemma B.3 and Lemma B.4 hold. Conditioning on this event,
we claim Z; < 3, forany t > 0.

We prove this by induction on ¢. Initially, the base case of ¢ = 0 holds since Sy = 0 = Z; by definition. Now fix some ¢ > 1

and assume that for all 0 < ¢ < ¢t — 1, we have Z; < f3;. This implies that & = & = --- = &_1 = 1. Then, by Eq. (9), we
have
t Trz—1 t 2 92 t Trz—1 t 2 92
2771'1:7; Zif di,1 Wy 27]2‘137: Zl; di,1 ;W;
Zt2 < Z 1 12 n 5 = Z —12&,1 + LQ (12)
= + w; z,leeri = 1+ w; i:11+wi

Since the conclusions of Lemma B.3 and Lemma B.4 hold, we have

t Try—1
27}imi Z-_ di,1
#&'—1 < 3p67/A4, (13)
i=1 ?
L2y
DTS B4 (14)
i=1 i

Therefore, substituting Eq. (13) and (14) into Eq. (12), we have Z; < (3;, which ends the induction. Taking the union bound
of the events in Lemma B.3 and Lemma B.4 implies that with probability at least 1 — §, Z; < (; holds forany ¢ > 1. [

C. High Probability Events

In this section, we define some high probability events, i.e., confidence sets concerning the parameter u,;,, and show

how to build them. The goal of this section is to build the sharp optimistic confidence set Cy, ;, in Lemma 7.5 for all
(k,h) € [K] x [H].

We lists all confidence sets encountered during the proof in the following. Confidence sets c’k’h,@k’h,c}’h are called
independent confidence sets, since they can be built by applying self-normalized concentration inequality directly without
conditioning on other events. Instead, confidence sets CA,(Cl})L7 CA,(CQ})L7 Cp,», are called dependent confidence sets since they can

only be built by conditioning on other confidence sets, apart from self-normalized concentration inequalities.

Definition C.1 (Confidence Set).  * Independent Confidence Sets:

C_k,h = {H : (u - ﬁk,h) ‘7k,h+1 i < 5}

~2

C~I~c,h = {M : (N - ﬁk,h) Vihtt|. < B}

5k,h = {H : ‘(N - ﬁk,h) ‘7k,h+1 A < B}

* Dependent Confidence Sets:
=k = fn) Vi, < BV}

68~ [0 =) (Vines = V0|, <52}

k,

A <@n+@m_3}
h

k,

CAk,h = {N : H (H - ﬁkh) Vk.,hﬂ

To simplify notations during the proof, we further define the following events that optimistic and pessimistic confidence sets
hold in multiple stages under some episode k € [ K] or all episodes.
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Definition C.2 (Optimism Event).

Ty = {Vh <W <H:p,e c},h,}
N R (15)
Ty, ={Vze[ IWWh<W <H:p, eCi,h/}
Definition C.3 (Pessimism Event).
B = {Vh < W < H iy € G |
(16)

B o= {Vie [K],Vh < W < H:py e Con}

In this section, independent confidence sets C_;ﬁh7 C~k7h, Cvk,h are built in Lemma C.8, C.9, and C.10 respectively in Ap-
pendix C.1. These independent confidence sets are built to upper bound the variance of the considered value function.
Specifically, the difference between the estimated variance of the constructed OptlmIStIC value functlon and the real variance
of the optimal value function, i.e., [Vth*+1](Sh, ar) — [Vk Vi hi1](sE ak),
Lemma C.12. In addition, the variance [Vh(Vk h+1 — ViE)](sF, af) is also upper bounded in Lemma C.13. Subsequently,

dependent confidence sets CA,(Clh7 CA(zh can be built based on the independent confidence sets in Lemma C.15, C.16 respectively

in Appendix C.3. Thus, the confidence set Ck n, the goal of this section, holds trivially if C,il})ﬂ C, (2) both hold. Finally,
Lemma 7.5 in the main paper is proved in Appendix C.4.

Before the formal proof begins, we give some necessary definitions. We first give definitions about-measurable space and
filtration required for our proofs.

Measurable Space Note that the stochasticity in the transition probability of the MDP are the only source of randomness.
Denote PP as the gather of the distributions over state-action pair sequence (S x A)Y, induced by the interconnection of
policy obtained from LSVI-UCB™ algorithm and the episodic linear MDP M. Denote [ as the corresponding expectation
operator. Hence, all random variables can be defined over the sample space 2 = (S x .A)N. Thus, we work with the
probability space given by the triplet (2, F,P), where F is the product o-algebra generated by the discrete o-algebras
underlying S and A.

Definition C.4 (Filtration). For any k € [K] and any h € [H], let F}, 5, be the o-algebra generated by the random variables
representing the state-action pairs up to and including that appears in stage h of episode k.

Measurablllty Thus [Vk th h+1](82, ah) Uk Jhs Ek Jhs Sk.hs O'k h,O'k thk+1 h are fk h- measurable [l,kJrl h is ]:k Jh+1-

measurable, Qk hy Qk hy Vk h Vk h 7Th are F,_1, g-measurable, but not F_1 j-measurable due to their backwards con-
struction.

C.1. Independent Confidence Sets

In this subsection, independent confidence sets C%;w CNkﬁh, @;ﬁyh are built in Lemma C.8, C.9, C.10, respectively. During the
construction of these confidence sets, it is unavoidable to build a uniform convergence argument by covering net of the
encountered function class. Thus, we also present the definition of possibly encountered function classes in the following.

Definition C.5 (Optimistic Value Function Class). For fixed J updating episode, let Y denote a class of functions mapping
from S to R with following parametric form

7(-) = max min min{ )+ BB, 0) AT (), }

a 1<i<J

where the parameters (w;, 8, A;) satisfy |w;|2 < L, 8 € [0, B], the minimum eigenvalue satisfies Apin(A;) = A, and
sup, , (s, a)l2 < 1.

Definition C.6 (Squared Optimistic Value Function Class). For fixed J updating episode, let V2 denote a class of functions
mapping from S to R with following parametric form

V2(-) = max min [min{ +B\/¢ TATG(a) H }]2’

a 1<i<J
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where the parameters (w;, 5, A;) satisfy |w;|2 < L, € [0, B], the minimum eigenvalue satisfies Apin(A;) = A, and
SUP; 4 H¢(87 a’)HQ <L

Definition C.7 (Pessimistic Value Function Class). Let V denote a class of functions mapping from S to R with following
parametric form

~

V(~>=max{maxw a) — By/$( a) TA1G(,a), }

where the parameters (w, 3, A) satisfy |w|z < L,8 € [0, B], the minimum eigenvalue satisfies Ayin(A) = A, and
SUPg 4 H(,b(S, a’)HQ <L

Now we are ready to build four independent confidence sets (,7;6’ hs 5k hs 5k n- Since radius of independent confidence sets,
i.e., B , B, 8, will not become dominant terms in the final regret bound, we build these four confidence sets with traditional
Hoeffding inequality (Lemma F.3) with covering net arguments.

Lemma C.8. In Algorithm 1, for any 6 € (0,1), any k € [K] fixed h € [ H|, with probability at least 1 — §/H :

pp, € Crn = {N : H (1 = Bgp) Vi A S B},
k,h
where
H 4K L 8K2B2Vd
VH,|dlog [14+ — | +1 log(1l+ —= ) +d?Jlog |1+ ——— | + HVAd + 2.
B = dog<+Hd)\>+og(§>+djog<+H\/X>+dJog< 22 >+ +

Here J = dHlog(1 + K),L =W + K/\ and B is a constant satisfying 3 < B with E given in Lemma C.17.

Proof. Initially, note that we have

(ﬁk,h - Mh) vk,hﬂ a

k,h

k—1
~_q ~D . . T A~
= | Akn [_/\Nh + >0 nd(sh, ah e, ] Vih+

i=1 Awn
k—1 .
N o i T
=M Vinar + Y, 5,5 b(shs ap)el Vi
i=1 AZl a7
< —)\Nth,thl -1 93, G nd(shap)e Vk h+1
=t Al
1 _
<—= - AHVd + Z (sh»ap)ep, th+1 ;
Ny -
k,h

where the first equality is due to Eq. (55) in Lemma F.9, the first inequality is due to triangle inequality, and the second
inequality holds since || uth he1l2 < H+/d and the minimum eigenvalue of Ak p is no less than \.

Thus, we bound || Zf 11 82,3 (sh,ah)eh Vi h+1HA : in the following. However, Vk h+1 18 Fg p-measurable, which

brings obstacles in directly applying self—normahzed bound for martingales. We need to build a uniform convergence
argument for ka ht1-

For any (k,h) € x[K] x [H], Vin(-) = min{max,(8), + ﬁkﬁhf/k,hﬂ, o(,a)) + B\\¢)(~7a)HK;1h,H} in Algorithm 1.
Moreover, we have ,

Hah + ﬁk,h‘/}k,h-ﬁ-lH

0h+.//i Z Sh,ah Vk h+1(5h+1)

2
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k-1
Ak 21055 (sh, aj) Vi1 (shi1)

=1
k—1
-1 ¢( i7 1)
(\/ﬁ)z h; Sh a/h

where the first inequality holds due to triangle inequality, the second inequality holds since ‘A/k h+1(-) < Hand g, > vVH
for any ¢ € [k], and the last inequality holds since Apyin(Ag.n) = A and sup, al (s, a)HQ < 1. Subsequently, we claim

Vk h € V, where V is defined in Definition C.5, with L = W + K /Aand B = B. Here, B is a constant satisfying 6
with ﬁ specified in Lemma C.17.

W +

2

<W + <W + K/,

Then, we fix a function V() € V.S — [0,H]. LetG; = Fip, ® = 0, ,¢(sh,ai) and n; = Zéeh—rV =

GinlunV, d(sh,ai,)) — 5, 1V (s}, ). Itis clear that a; is G;-measurable and 7; is G; ;1-measurable. Since ¢; > v H, we

have ; , > /H. Besides, we have |x;|2 < 1/vV/H,E[n; | Gi] = 0, |n;| < VH and E[5? | G;] < H. By Lemma F.3, we
obtain that, with probability at least 1 — 6/H, for any k € [K] and fixed h € [H],

H
\ﬁ\/dlog 1+ BM)\) + log (6)

Denote the e-cover of function class V as ./\75. Consider an arbitrary f € V. From the definition of e-cover, we know
that for f, there exists a V' € N, such that |f — V|, < e. Since He}ﬁ(f = V)2 < |€.|1lf — Ve < 2¢ and
| 232 65 (shs i)l i < K/(HVX), we have

|
| k,h

T
G, o(sh,ap)e, V

A—1
Ak,h

- 2e K
st al)el -V < . 18
4 zh¢ h Q)€ (f ) - SHA (18)
B Apon
This further implies the following inequality holds with probability at least 1 — §/H:
k—1 S
Gind(shan)en f
=1 Al
k—1 4 . k—1
<| Y aidlshane V] 4| Y 8 e (F-V)
=1 Agy =t Al (19)
k—1
i T 2eK
< 67 2(st al)el V =
~ ’L,hd)( h h) h - H\/X
= Apn
K H ~ 2eK
<V H, |dl 14— 1 — 1 o+ —=.
\/7\/ og(+Hd>\>+og<5>+og +H\f)\

where the first inequality is due to the triangle inequality, the second one holds by Eq. (18), and the third inequality holds by
a union bound over all functions in N with

4L 8B2v/d
<dJlog (14+ — ) +d*Jlog | 1+ v
€ A2

according to Lemma F.11 with J = dH log(1 + K) by Lemma F.8.

log |-

Note that Eq. (17) holds and X/}k,;w 1(-) € V. We have with probability at least 1 — 6/H, for any k € [K] and fixed h € [H]:

i, h sh’ ah eh Vk h+1

+ HVAd

—1
A

H (ﬁk,h - Nh) ‘7k,h+1



Nearly Minimax Optimal Reinforcement Learning with Linear Function Approximation

K H AKL 8K2B2\/d
<VH,|dl 14+ —— 1 — dJ 1 1+ —— d?J1 14+ ———— HvV)d + 2
og(+Hd>\>+og<5)+ og(-&—Hﬁ)-i- 0g<+ )2 >+ +

=B,
where the last inequality holds by Eq. (19) and setting e = H+v/\ /K. [

After building the confidence set ék,h in Lemma C.8, confidence sets 5;6’ n and C’vk r, can be built similarly.
Lemma C.9. In Algorithm 1, for any 6 € (0, 1), any k € [K] and fixed h € [ H], with probability at least 1 — §/H :

<5},

~ R 2
By €Crp = {N : H (=B ) Vi N

k,h

where

~ K H SKL 32K2B2\/d
=V H3, |dl 14— 1 — 1 1+ — 2J1 1+ —— H?v 2.
B dog<+Hd)\>+og<5)+dJog(+ﬁ>+dJog<+ 1z >+ Ad +
Here J = dHlog(1+ K),L =W + K/ and and B is a constant satisfying B < B with Bgiven in Lemma C.17.

Proof. The proof of this lemma is almost the same as that of Lemma C.8, except for replacing ‘A/k h+1s 17 and NV < by ‘A/,f hals
\72, and AV 2, respectively. Here

log ‘/\Aff

LH 2B2H2\/d
< dJlog (1 + 8€> +dJlog <1 + ?’M[) :

where L = W + k/)\ and B is a constant satisfying B < B with B given in Lemma C.17.
After setting ¢ = H+/A/K, it can be proved that with probability at least 1 — &/H, for any k € [K] and fixed h € [H]:

Ak.n

H (ﬁk,h - Nh) ‘A/i,hﬂ

< 3 _ — p— 2 - - Y7 2
vH dlog(1+ )\)+10g<6>+djlog<1+ \/X>+dJlog<1+ 2 >+H VAd+ 2

~

=5.

Lemma C.10. In Algorithm 1, for any 6 € (0, 1), any k € [K] and fixed h € [ H|, with probability at least 1 — 6 /H :

_ <B},
A

k,h

1y, € Chp = {u : H (1= Bon) Vi

where

< K H AKL 8K2B2\/d
=/ _ = fsinlatend 2 onbrva /
I6] H dlog<1+Hd)\>+log<6)+dlog(1+H\/X)+d10g<1+ DY >+H Ad+ 2. (20)

Here L =W + K/X and B is a constant satisfying B <B.
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Proof. The proof of this lemma is similar to that of Lemma C.8 except for replacing ‘A/MLH, 9, and ./\A/; by XV/k,hH, V, and
N, respectively, where

log )/\76

AL B*/d

<dlog (14 — | +d*log 1+8 vd .
€ Ae?

Here L = W + K/ and B s a constant satisfying B < B with B specified in Eq. (20).

After setting ¢ = H~/\/K, it can be proved that with probability at least 1 — &/H, for any k € [K] and fixed h € [H]:

H (ﬁk,h - Hh) ‘7k,h+1

k,h

<V + — | + — | + + —— ) 4+d? + — |+ HV +

_J

C.2. Variance Upper Bound

In this section, we prove some necessary lemmas to build upper bounds of value function variances, including variances
of V¥ 1 (-) and [Vi 1 — V¥ 1](-). Specifically, we present Lemma C.12 in Appendix C.2.1 to bound the difference
between the estimated variance of the constructed optimistic value function and the real variance of the optimal value
function, i.e., |[Vi Vi 1 1(s}, af) — [VinVine1](s), af )|, with high probability. In addition, we also present Lemma C.13

in Appendix C.2.2 to upper bound the variance [V}, (Vi n+1 — Vi )] (55, af).

C.2.1. VARIANCE OF V}*_, ()

Before proving Lemma C.12, we first present Lemma C.11, which upper bounds |[Py, (Vi p41 — ViE D1(sk, af)| under

optimism and pessimism events T kg1 O 7 k,h+1, and serves as the building block for Lemma C.12.

Lemma C.11. In Algorithm 1, for any k € [K| and any h € [H), under \i/;g7h+1 A Cf’k;)h_i,_]_, we have

b Visn, S(sh, ah)) = G Vi, @ ab )| < [, = 1) Vi, d(shs ab)|
[ Vinsn = oon Vs S5 ah)| + [ = 1) Vi, o5k, af))]
Proof. By definition, we have
Kb Vi1, S5k ah)) = G Vi, @(s5 ah)|
— [Pu i1 (5 ak) = PaVisiy (shs ab)| = Paicna sk, af) = PuViy (sh.af)

<PpVins1(sy, af) — PaVinsr(si, af) = ‘Pth,hH(Si,alﬁ) — P Vit (sh, af)|

where the second equality holds since P, is a valid distribution and ‘A/;g’hJ,l ()= Vh’"+1 (+) under \flk, n+1 by Lemma D.1, the
first inequality holds since P, is a valid distribution plus Vh’"+1 () = Iv/k,hﬂ (+) under U k,h+1by Lemma D.1, and the last
equality holds since Py, is a valid distribution plus ‘A/k7h+1(~) > ‘v/k,h+1(~) under \/I\/k7h+1 N ¢k7h+1 by Lemma D.1.

Therefore,
[Pu ks (shs af) = PaVitis (sh, ab)| < [PaPhonsa(sh, af) = PV (o5, af)

:‘Pth,hH(Slﬁ, ay) =P nVine1 (st af) + Prn Vi w1 (sh,af) — Pr Vi nyr (sf, af)
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+ Pro Va1 (55, af) — PuVi s (s, aﬁ)‘

< ‘thfk,hﬂ(sg,aﬁ) - fﬁ)k,hf}k,h+1(5§7a1}2)’ + ‘ﬁ\hk,h [‘Aﬁc,hﬂ - ‘7k,h+1] (s’;,ai)]
+ ‘fp\)k,h‘\}k,h-&-l(sZa ay) — Ph‘v/k,hﬂ(slﬁ, a’;ﬁ)‘

— K(un = ) Visn, S5k ab )| + K (Vicnss = Vinsn), $lsh, ah))|

+ ‘<(ﬁk7h - Nh)‘v/k,hﬂa B(sy, aﬁ)>’ .

Based on Lemma C.11, we are ready to present Lemma C.12.
Lemma C.12. In Algorithm 1, for any k € [K| and any h € [H), under \/I\/k;7h+1 A CI/Ik;,h_A,_l, we have
~ A ] N ~ 2
’[thh*+1] (Slﬁa aﬁ) - [Vk,hvk,hﬂ] (SZ, a]ii)’ < min {H(H’k,h - Hh)Vk,hHHK H¢(SZ»GZ)HA;1 +4HAg p, 2H2} )

k,h sh

where

Agp = H(ﬁkh - “h)vk,thlH]\ H(ﬁ(slﬁa aﬁ)“,};lh + ‘<ﬁk,h(vk,h+1 — Vi), (Zf)(slfm alﬁ»’
k,h 2]

+ H(ﬂkh - ll/h)Vk,thlHA ||¢(827a2)||]\;1h )
k,h sh
Proof. By definition, we have

‘[thh*ﬂ] (Slfmalfb) - [@k,hﬁk,hﬂ] (Sﬁvaﬁ)‘

2 ~ A 2
:\<uhV;ﬁ+1 ,B(sh,ar)) — [<Hk,hvk,h+1’ ¢(s§,a2)>] [0,H2]

2
+ {[<ﬁk,h‘7k,h+1,¢(slﬁ7alﬁ)>] [o,H]} - [<uhV;’;+1,¢(s’,§,a’,§)>]2‘

. o~2 2
< ‘ [<p‘k,hvk,h+17 ¢(S§7 a’,ﬁ)}] 2] - <NhV7Z+1 ’ ¢’(SZ= alfi»‘

[0,H
I

2
{[@eaVinsothabn] - (GaViotha)

Jr

Iz

where the inequality holds due to the triangle inequality. We bound I first.

L = ‘[<Hk,hvk,h+1a¢(sﬁvaﬁ)>] ! - <thz+1 7¢(s’,§,a’,§)>’

[0,H2

= [ Vine bk ab] L~ Vi bk ab)
~ 2 2
Vs @k k) = (Vi @(sh ah)|

a2 .
< ‘[<Nl@,hvk,h+1> B(sy, a2)>]

[0,H?2

~2 . L
oy ke 0(ek o))
~ 2 2
+ )<ll’hvk,h+17 qb(sZ, GZ)> - <p’hvlﬂ:+1 7¢(827 aﬁ»)

- 2 -
<[ = ) Vicr S(shs abD)| + 2H [ Vicsn, S5k, ab)) = Vi, #(sh, af))
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~ ~2 R .
< ’<(p’k,h - /J’h)vk,thlv ¢(327 aﬁ)>) + 2H[ ‘<(Hk,h — 1)V hits ¢(5§a a’fb)>‘

[ (Vs = Vi), (ks ab )| + [(Bien = ) Viensr, d(sh, b)) |

. 2 - -
< H(Hk,h ) Vini A (s, alfb)Hfrl + 2H[ H(Hk,h — ) Vihi| -
k.h k,h Ay

X ||¢(327 ai)”ix;fh

+ )<ﬁk,h(vk,h+1 - Vk,h+1)a¢(5§7alﬁ)>’ + H(ﬁ'k,h — ) Vit A ||¢(327a2)‘|]\;1h]
k,h 5

where the first inequality holds due to the triangle inequality, the second inequality holds since Pp(- | sZ,aZ) =
(g (- ) o(st, ah)> is valid distribution and Vj, h1(0), V¥, () € [0, H], the third inequality holds due to Lemma C.11

under ¥ Ehtl O ¥ k,h+1, and the last inequality holds due to the Cauchy-Schwarz inequality.

For I, we have

2

2
b '{[<’A‘kvhv’“vh+“¢(55’“§>>] [O,H]} [V b5 ab)]

| [@aTinnsshabn]

)

+ <NhVZ+17 ¢(S;€m aﬁ»'

|[@aPinerotshabp], - Vi etha)

[0,H]

<2H ‘ |:<,ak,hvk,h+lv ¢($;€u aﬁ)>]

_ V* k k

[0.5] <Hh h+1> ¢(3h7 ah)

<28 | [ = 1) Visr, S8 o )| + [ (Vionsr = Visn), d(sh, b))
[ = )V s, (s, b)) |

<2H[ H (B — 1) Vit -
Ak.n

Hd’(SZﬂIZ)HA;lh + ’<ﬁ’k,h(vk,h+1 —Vint1), ¢(SZ»GZ)>‘

etk ala |

+ ”(ﬁ'k,h — 1) Vi ht1|
Ay

where the first inequality holds since 0 < [{fi, WV, hets B(sE, af D)oy < H, 0 < PRVF (s, af) =

(up Vi1, @(sk,af)) < H, the second inequality holds due to Lemma C.11 under \Ifk hal O \I/;€ h+1, and the third
inequality holds due to the Cauchy-Schwarz inequality. Combining the upper bound of I;, I> in above two inequalities and
using the fact that I; and I are both bounded by H? give the final result. O

C.2.2. VARIANCE OF [Vi nt1 — V¥ 1]()

Lemma C.13. In Algorithm 1, for any k € [K| and any h € [H], under \/I\/k7h+1 o) ‘T’k,h-klr we have V¥, | () < ?k,h+1(~).

Moreover, for any function V : S — [0, H] satisfying V¥, (-) —=¢ < V() < YA/;CJLH(-) +(, where 0 < ¢ < H is a constant
we have

[Va(V = Vit )] sk, k) < min {2 G Vi, sk ab)) = i Vi1, S(s5, af))

+ H(ﬁk,h — ) Vini A lo(sr, aﬁ)HIA\Z,lh

| @ = 1) Vi

o oGtz +¢). a7},

Proof. Tnitially, we have V¥, (-) < < Vins1(-) by Lemma D.1 under Uy, j, 1. Denote V(-) = V(-) — Vi 1 (+). By definition
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of the variance, we have
[Vi(V — Vh+1)](5hvah) [th](‘shvah) th2(5h,ah) [PhV(Sh»ah)]Q<Ph‘72(5§7alﬁ)
<2H - Po|V(sh,a}) < 2H - [PaVnsa sk, ab) — PaVifi (s, af) + ¢ @)
<2H - [Pth ha1(sh,af) = Ppv h+1(8h,ah)+C]

where the first inequality holds since [IP’hIN/(s;j, af)]? = 0, the second and third inequalities both holds since —H < —( <
V()= V() < Vg () = Vi, + ¢ < 2H, and the last inequality holds since Vi 4 1(-) <V} (+) under Wy, p, 1 by

Lemma D.1.

On the other hand, by Cauchy-Schwarz inequality, we have

BuVins(shyaf) = BenVines (s ah)| < | (an — ) Vinsa| - [o(shi b3 22)
k,h sh

‘thk,thl(SZ,aZ) - ]?Dk,hvk,h+1(sg»ag)‘ < H(ﬁk,h — 1)V ioht A |b(s}, GZ)H,A\;lh (23)
k,h sh

Combining Eq (21), Eq (22), Eq (23) and using the fact that [V, (V — V¥ )] (sk,a¥) < H? give the final result. O

C.3. Dependent Confidence Sets

Based on independent confidence sets ka By ka h Cvk p, built above and Lemma C.12, C.13, dependent confidence sets
CA,(Clh, CA(2h are built in Lemma C.15, C.16, respectively. As a results, the confidence set Ck h» the goal of this section, holds

tr1v1ally if CA,(:})L, CA,?})L both hold. We build confidence sets C ,(c Z and C ,(f ,)1 elegantly because the radius of the confidence set

Ck7 n will exactly determine the sharpness of the regret obtained by LSVI-UCB™ algorithm. In particular, we utilize the
conservatism of elliptical potentials, which is detailed in Remark 7.4 in the main paper. To formally utilize this property, we
first present Lemma C.14 to keep the magnitude of the considered MDS small with the conservatism of elliptical potentials.

Lemma C.14. In Algorithm 1, for any k € [K| and any h € [H)], we have

G n®(sh, ay)

1

~—1 .

o - min R o < —F.
o { Akfh} HA
Proof. In Algorithm 1, for any k € [ K] and any h € [H ], we have following two cases:

< 1/(H3d®), then ¢ ;, = v/ H such that 5; ;, = &; p,. In this case, we have

(siva)]

1<v 3d5/(H3d®) < 1/V H3d5.

k}

oihstinai)| ., = [Frhdish o)
Ak h

’kl SVH dSHth (hoap)| <

where the inequality holds since H3d® - jAXk, n o> Kk, » by following facts:

k—1
H3d - Ay = H3dP - (2 G hd(sh, al)@(sh,al)" + AI) 2 i (sh, ah)P(sh,ap,) " + AL = Agp,
i=1

where the inequality holds since &; ,, < vV H3d?5; j, in Algorithm 1, which implies H 3¢5 z/ik h f./NXM 1, 18 a semi-positive
definite matrix.
Therefore, the conclusion holds in this case since o1, , = vV H.

» Otherwise, ¢y, = H 2y/d5, such that Okh = H?+v/d>. 1In this case, the conclusion still holds since
i T o
min{1, 5} @ (shrah)| 31 } < 1.
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Now we are ready to prove Lemma C.15 which builds the dependent confidence set CA,(C ,)l, based on independent confidence
sets C_k, BN C~k BN th » and Lemma C.12. Indeed, the confidence set 5 ,(;})L corresponds to the deviation term of the form
[(I@kh —Pp)V;* 11(sy, af) in the main paper.

Lemma C.15. In Algorithm 1, for any § € (0,1), any k € [ K| and fixed h € [H], under Uy O Upy1, with probability at
least 1 — 46/H:

(1) _ ~ ~
Ky € Ck,h N Ck,h N Ck,h N Ck:,h;

where

é\lgl})z = {l‘ (= B ) VZHHAM < B(l)} )

3(1) :8\/dlog (1 + HKd)\> lo <4K52H> + 4log (41(:H> + HV ). (24)
Proof. Let G; = Fip, x; = thﬁ(sh,ah) =\ + Zj 1T x],and n; = Zheh Vh+1 ]l{uh € Clh I8 Czh )

Cvi,h} ‘ ﬂ{(l\li,h+1 ) ‘sz‘,h+1}- Now that V', is a ﬁxed function and 1{y,;, € Ci,h ) Cz,h N Cz,h} ]1{‘1’1,h,+1 ) \Ilq,,hH} is
G;-measurable, it is clear that x; are G;-measurable and 7); is G; 1 1-measurable.

Besides, we have E[n; | G;] = 0. Since 6, > i, = VH, || < VH and ||z;|2 < 1/+/H. In particular, we claim

|n; - min{1, |a;| ;1 }| < 1 because of the following three facts: (i) |e}'lT per L{p, €Cinn Cin N Cinl}- ]l{\fll htl O
i—1

U, h+1}] < H holds by |[Vii1 = (1) < H; (i) 5 mm{l sz”z 1 } 1/(H?v/d®) holds by Lemma C.14; and (iii)

10{p), € Cin " Cin nCin}- {1 0 Ui} <

Furthermore, it holds that

Elr? | 6] =677 1{mn € Con 0 Cin 0 Con} - 1{Wisr 0 T | [VaVitia](shs ah)

{
<G} ]l{u €Cin CN Cv }[[ Zh‘/lh“rl] (sh»ap)
{ 2

I, -
H i,h ’L h+1 Ain

H(z)(s}w a;l,)”;i:’ll + 4HAi7h7 2H2} ]

Sﬁ[}f[ [Vi,hvi,h+1] (s, aj) + min {5 |b(s}, alﬁ)H,g,—; +4H0; p, QHQ} ]

where the first inequality holds due to Lemma C.12 under \TIZ hil O \TIZ h+1, the second inequality holds due to the definition
of indicator function, and the last inequality holds due to the definition of 5, j,. Here A; j, and d; 5, are given by

A= (Ao =) Vinor| o 0k ai)l5 2+ [Bin (Viror = Viner)  0(sh b))

+ H (ﬁ'iﬁ - /J/h) Vi,h.»,_l . H(b(s’;na’;:)H[\*}l )
i,h o
i =B |80k i lacy + [un (Virss = Vinnr ) @lohci] + 3605k ab) ;-

Then, by Lemma F.4, with probability at least 1 — §/H, for all k € [K ] and fixed h € [H],

(s, ah)€p, Vh+111 {Hh €CinnCinn Ci,h} 1 {‘I’i,hu N ‘Ifi,h+1}
-1

k,h (25)

<8y dtog (14 5 Viog (MY |y (420
S o8 Hax ) B\ s B\ )
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Denote 5}51) as the event that g, € [ ke[ K] C_k7h N C~k7h N Cvk » and Eq. (25) hold, which happens with probability at least
1 — 46/H by taking a union bound. In addition, we claim that with probability at least 1 — 46/H, for all k € [ K] and fixed
he [H],

sh,ah Eh Vh+1 1 {/Lh € @,h N &,h M d,h} -1 {\/I}i7h+1 N Eli,h-&-l}

-1
Ak,h

Shvah 6h Vh+1 1 {‘I’i,hﬂ N \I’i,hﬂ}

—1
Ak h

K 4K?H 4K?H
<
8\/dlog <1+ Hd)\> log( 5 > +410g< 5 >,

where the equality holds since under event 5,(11), forany i € [K], 1{p;, € Cip N @ h O Cvlh} = 1. Moreover, if we further
assume Uy1 N Wy q holds, which means 1{¥; 41 N ¥; 41} = 1 for any i € [k], then with probability at least 1 —46/H,
forany k € [K] and fixed h € [H]:

~ K 4K2H AK?H PN
(i~ 1) Visils, | swlog(um)log( ) g (M) 4 v -

since

H (ﬁk,h - “h) VZ+1H1AX;€JL < H\/m +

-1
Aph

k—1
A~ i iy i |

Z G nd(sh,a)e, Vi
i=1

with a similar argument as in Eq. (17). Thus, we conclude that for any k € [K] and fixed h € [H], under (I}h+1 N \Tlhﬂ,
with probability at least 1 — 45/H:

K, € é\l(cl,)l N Ek’h N ak,h N Cvk,h-
O

Subsequently, we prove Lemma C.16 which builds the dependent confidence set c k. h, based on independent confidence sets

Ck,h N Ckyh and Lemma C.13. The confidence set Ck,h corresponds to the deviation term of the form [(I@kh — ]P’h)(IA/k’hH —
V¥ 1)](sy, af) in main paper, which is controlled to be small in LSVI-UCB™*.

Lemma C.16. In Algorithm I, for any § € (0,1), any k € [K] and fixed h € [H], under \TJ;,_H A U, 1, with probability at
least1 —36/H:

/,LhEC thkthkh

- 3(2)},
B@ =g lo 1+£ lo AKCH +dJlo 1+@ +d2Jlo 1+W
- Hd2 & Hax ) |8\ & HVN & H2)2

AK2?H AKL ) 8K2B2:/d —

él(ff)t = {“ : H (:“ - ﬂkh) (Vk-,h+1 - V;kH-l) A
k,h

4
+
H\ b

Here J =dHlog(1+ K),L =W + K/X and B is a constant satisfying B < Bwith B given in Lemma C.17.
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Proof. It suffices to upper bound | 37~ G (s, al)e (Vi — Vi) Hf\_l with a similar argument as Eq. (17).

Besides, we need to build a uniform convergence argument by covering net since Vk h+1(+) is Fi_1 p-measurable. As
stated in the proof of Lemma C.8, Vk n €V, where V is defined in Definition C.5, with J = dH log(1 + K),L = W + K/A
and B = B. Here, B is a constant satisfying B < B with B specified in Lemma C.17.

Then, for a fixed function V(-) € V : S ~ [0, H] and a constant ( = HV/A/K, let G; = ihs T = 0, ¢(sh,al),
= AL+ Z _yxgx], and 7; = a;. nEh (V Vi) Ly, € Cipn 0 Cim} - Vi —-(<V < Vi,h-ﬁ-l +¢}-
ﬂ{qu,h-i—l N \Ijz,h+1}-

Since V'(-) and V() ; are fixed functions, and % i1 and 1{py, € Cip N CZ E IL{\IIz Bl O \Ilz h+1} are G;-measurable,
it is clear that x; is G;-measurable and 7; is G, 1-measurable. Besides, we have E[n; | G;] = 0. Since 6, , = ; p, > > H,

In;| < VH and ||&;]2 < 1/vVH.
Similar to the proof in Lemma C.15, we claim |7; - min{1, H:BZHZ— }| < 1/H~/d5 because of the following three facts:

T

() e ' (V -V, Vi, —(<V <V, ht ¢} 1{Wini1 0 Wipia}l < H holds by [(V(-) = Vi, (1) -
Vi =<V < Vi + | < H; (i) gy A+ - min{1, Ha:iHZ_:ll} < 1/(H?V/d°) holds by Lemma C.14; and (iii)
|1{p), € Cip, 0 Cth} : ]l{@ah“ N ‘T’i,h+1}| < 1. Furthermore, it holds that

1

E[n} | Gi] =3i_ﬁ -1 {Hh €Cinn Cvzh} -1 {V;:H -(<V< ‘7i,h+1 + C} 1 {‘T’i,hﬂ N \\I;i,h-&-l}
AVR(V = Vi D1 (shs ah)
<3{ﬁ -1 {Hh €Cipn Cv'zh} . QH[@k,}JA/k,hH(SE, ay) — ﬁ\pk,h‘\}k,h-&-l(sia ay)

+ H (B — 1) ‘A/k,hﬂHKM (s, a’,j)HK;}h

+ H (B — 1) Vit i |p(sk,ar)|z-1 + C]
k,h k,h

<o ;- QH[Pk,th,hH(S'L ah) = PunVinir (s, a) + Bl (s, ap) |51+ Blo(sh )|z + C]
< 2
T Hd¥
where the first inequality holds due to Lemma C.13 under @Z hal O ‘ifl n+1, the second inequality holds due to the definition

of indicator function, and the last inequality holds due to the definition of &; j,.

Then, by Lemma F.4, for all k € [K] and fixed h € [H], with probability at least 1 — §/H:

H Z o, (st al)el (V - V;I‘H_l)

-1 {.Uh €Cinn Ci,h} -1 {Vltﬂ —-(<V< Vi,hﬂ + C} -1 {‘i’i,hﬂ N ‘f’i,hﬂ}
<8 —2 log {1+ —K log AR H + 4 lo 4K°H
<\ 7@ s U T man 3 ave C\ 6 )

We further proceed our proof under the event that \f/hﬂ N n+1 holds, which implies ]l{\fli’hﬂ N \Tli’hﬂ} = 1 for any
i € [k]. Denote 5,(12) as the event that p; € ﬂkE[K] CTkyh 8 CZM and the above inequality holds, which happens with

probability at least 1 — 36/ H by taking a union bound. In addition, we claim that under T htl O 7 h+1, With probability at
least 1 — 35/H, for all k € [K] and fixed h € [H],

H Z 04 h (sh»ap)er, (V - V;I:+1)
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-1 {Hh €Cinn éh} -1 {VZ-H —(SV Vi + C} -1 {‘i/i,hﬂ N ‘I’i,hﬂ}

A-—1
Apon

Shvah Eh (V - V;I:H) -1 {V;;H -V < ‘71,%1 + C}

o 2 o (1h K Ve (MCHY 4 (4KRH
Hae ® Hax) B\ 75 uvae e\ )

where the equality holds since under event 5,52) m\i/hH m\\I//hH, forany ¢ € [K], 1{p,, € C_Lthvi’h}'ll{\fli’hH m@i7h+1} =
1.

A—1
Aph

Denote the s-cover of function class V as N Since Vk ht1(t) € ]7 for any ‘Afk’hﬂ, there exists a V' € /\A/'E, such that
HVk ht1 — V'] < e. This implies Vi ; — e < Vk hi1 — €< V' < Vi1 +e<Vipg +eforanyie [k], where

the first inequality holds by Lemma D.1 under T nh+1, and the last inequality holds by definition of optimistic value function
in Algorithm 1.

In addition, setting ¢ = ( = Hv/A/K makes 1{V} , — ( < V <V, h+1 + ¢} = 1forany i € [k]. Moreover, since

lei, (Vinr = V)2 < e Viner = Ve = 22 and | 552 3, 26 (s) af) 4+ < K/(HV/A), we have
— ~ 2e K
(si,al)e (V,c b1 — V’) 1 {V;ﬁ+1 <V < Viper + c} < =2 @7
= i HVA
= Ak,h
This further implies that the following inequality holds with probability at least 1 — 35/ H:
k—1 o
G, o (sh, ap )€ (Vk htl — Vh+1)
=1 ALl
k—1
= a;. }%d)(shvah)eh (Vk h+1 Vh+1) 1 {Vh+1 C<V' <Vipp + C}
=1 Al
k—1
< Gind(sy ap)e, (V/=Vi) -1 {V;:—&-l —C<SV' < Vipa + C}
i=1 f\;lh
2 b (s}, aj,)e (th+1—V/) 'H{V;ﬁl (<V <‘71h+1+f}
=1 AL
k—1 T ~ 2e K
< Z 31 h (Sh7ah>€h (V/ - Z+1) -1 {VZH —-(< V' < Vine1 + C} + —F
i=1 AL H\/X
k,h
<8y /1o KN Thog (21 1o [2]] 4 —2 [1og (1Y 410 0[] + 225
s\ w2t T Ea ) |t T A | TV A & VA

where the first inequality is due to triangle inequality, the second inequality holds by Eq. (27), and the third inequality holds
by a union bound over all functions in N with

2
<dsog (1+ 1) 4 27 10g |, BBV
€ A2

according to Lemma F.11 with J = dH log(1 + K) by Lemma F.8.

log Ag

Similar to Eq. (17), for any k € [K] and fixed h € [H], under Upo1 0 Upeq, we have that, with probability at least
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1 — 30/H:
H (ﬁk,h — ) (Vk,h-&-l - VZH) ~
Ag.n
1 k=l T /A
<5 AV Y8R0 abe (Vinn = Vi)
= A,

2 K AK2H AKL 8K2B2+/d (28)
<8 | —log 1+ —) [log =2 log (1 4+ =2 27log |14+ 2~ YT
8 T g(+Hd)\)log( 5 >+dJog<+H\/X>+dJog<+ P >]

4 AK2H AKL SK2B%/d
+——|log ([ —=) +dJlog (1 + —= ) +d®Jlog | 1 + == = | | + HV d + 2
HVd l g( g ) g( Hﬁ) g( H2x2 )]

=B,

where the last inequality holds by the above proved self-normalized bound and ¢ = ¢ = H+v/A\/K. Thus, we conclude that
for any k € [K] and fixed h € [H], under W), ;1 ~ ¥}, 1, with probability at least 1 — 35/H:

Ky € é\](j})L N Ek,h N 5k,h-

C.4. Proof of Lemma 7.5

Now we are ready to prove Lemma 7.5, i.e., building the sharp confidence set C k,h» in the main paper, based on above building
blocks including confidence sets (,7k7h, 5k7h, 5k7h, Cklzw @22}1, and Lemma C.12 and C.13 for upper bounding variances of

value functions. In the following, we present Lemma C.17, which is the full version of Lemma 7.5 in the main paper.

Lemma C.17. Set B = 3(1) + 3(2) with 3(1) and 3(2) given in Lemma C.15 and C.16, respectively. Then for any § € (0,1),
with probability at least 1 — 76, we have that simultaneously for any k € [K | and any h € [H],

Wy € é\k,h N CA;(CI C;izh A Crp 0 Crp 0 Ck h
and
‘[@k,h‘/}k,h-&-l](sz’a;i) ViV i1 (st a ‘ <Ug,n
[Va(V = Vif)] (s ar) <Bin
where
Ui =min {B|@(sh af) |51 +4H | |G (Vins = Vinrn) $(sh, ab))| + 8 é(sh a5
+Bllo(sh a) |z |27 29)
Bip =min {H| GV i, &k af) = BV insr, @(sh ab)) + B o(sh,ab) a1 + B le(shab) -
+ H\FA/K],Hz}. (30)

Here 3, E, E are specified in Lemma C.8, C.9, C.10, respectively, and { = H\/X/K

Proof. We first prove the following claim:

For any ¢ € (0,1), any k € [K] and fixed h € [H], with probability at least 1 — 7(H — h)§/H, for any h' such that
h<h <H:

2 _ ~ ~
MKy € Ck h N Ck B M Cl(c,})ﬂ N Ck,hf N C}g’h/ N Ck,h’,
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and
[@'k,h‘?k,hﬂ](sﬁyai) (Vi ViE (s, af) ’ <Ugn
[Vh(V - Vh+1>] (Sm ah) <Ejn

hold simultaneously.

We prove this claim by introduction.

* We first prove the claim for h = H. Since 17k7H+1(~) =Vi..0) = IA/k7H+1(~) = 0 in Algorithm 1 for any k € [K],
the conclusion holds for sure.

* Assume the claim holds for h + 1 < H. Then, for any k € [K] and fixed h + 1 € [H], with probability at least
—7(H —h—1)0/H, py, € Cppy N Cgpy forany h + 1 < h' < H, which implies \Ithrl N \Ith holds.

Combined with conclusions from Lemma C.15 and Lemma C.16, for any k € [K], the following events holds with
probability at least 1 — 76/H:

Ky € é\](;})L N é\l(fi)z N C_kﬁ M 5k,h N (\f]“h.
Moreover, we have
[@k,h‘/}k,h-ﬂ](slljaah) [Vth+1](Shva'h)‘ <Ug,n
[Vi(V = Vi )] (shyap) <Bgn

under the event \flhﬂ N \\I/Ih+1 and ka’h N CN’k,h N Cvk,h by Lemma C.12 and C.13 with ¢ = H\/X/K

Considering p;, € CAl(Cl,)l N CA,(f})L, we have

<[ (en = i) Viiala, , + H (1 — B ) (Vk,hﬂ - V}'ZH) )

<B4 =,

H (Mh - ﬁk,h) ‘7k,h+1 a
k,h

k,h

which implies p;, € @k p since (?k’h ={p:|(p— ﬁk,h)f/k,hﬂuﬁk S $}. In other words, p;, € CAk’h N CAkl,)L N

é\(hﬁckhﬁckhmckh

Thus, by taking a union bound over these two events, we claim that with probability at least 1 — 7(H — h)d/H, the
claim holds for h.

Therefore, the claim is proved by induction and setting h = 1 gives the desired results in Lemma C.17. O

D. Regret Upper Bound

In this section, we upper bound the final regret, where we show that the total regret is roughly bounded by the summation of
the exploration bonus, i.e.,

K . K H
Regret(K Z [Vk 1 () =V (Slf)] < Z Z BHQb(sl,ﬁ,a’,ﬁ)HAm

R K H K H
NI I IDN AT C XA

B
—
LS
Il

—
=
Il

—
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* The first inequality holds by the optimism of constructed value functions, which is built in Lemma D.1.

* The third 1nequa11ty is proved in Lemma D.4, which bounds the cumulative dlfference between the optimistic value
function Vk » and the value function associated with policy 7% value function Vh in Lemma D.4. We further bound the
cumulative difference between the optimistic value function Vk.y » and the pessimistic value function V}, ;, in Lemma D.5.

¢ The fourth inequality holds by Cauchy-Schwarz inequality, where first summation of estimated variance is bounded in
Lemma D.9 in Appendix D.3. The summation of estimated variance 2521 Zthl 0 = O(HT), utilizing the the
Law of Total Variance in (Lattimore & Hutter, 2012), detailed in Lemma D.6. The second summation can be bounded
by classical Elliptical Potential Lemma, presented in Lemma F.5 in Appendix F.

Putting these building blocks together, we are finally ready to upper bound the regret in Appendix D.4 as 5(H dVT +
H*d* + H3d"). Before the formal proof begins, denote the event when the conclusion of Lemma 7.5 holds as Y. Also
denote the event that the conclusion of Lemma D.2, D.3 and D.6 holds as =, =5 and Z3, respectively. The final regret
bound is a high probability bound builds under event Y n =1 n =5 N Z3.

D.1. Monotonicity

In this subsection, we build the optimism of the constructed optimistic value function V}, ;,, and the pessimism of the
constructed pessimistic value function V}, 5, over the optimal value function V* in Lemma D.1. These are the preliminaries
for our later proofs.

Lemma D.1 (Optimism and Pessimism). In Algorithm I, lf\flkh o) \i/k}h holds, then for any k € [K| and any h € [H], we

have
- (a) (b) ~
Vk_,h(s) < Vh( ) Vi h( ), Vs e S. 31D

Proof. We prove two inequalities by induction on respective hypotheses.

(a) Pessimism: For any k € [K], the statement holds for b = H + 1 since Vj, g741(-) = Vi) =0.

Assume the statement holds for h + 1, which means ‘v/k,h+1(~) < Vi¥ 1 (-) under CI//k’h+1. Since ék,h(-, ) =rp(y) +
it Vst @+ 1) — Bl g1 for (s, a) € S x A, we have:

Qi(5,0) = Qup(s.0)
=ri(s,a) + PaVifi(5,0) = [a(s,0) + Gt nVion, $(5.0)) = Bl(s,0)l 5. |
~(p Vst (5, @) = Gy Vinsr, @(5,0)) + Blp(5,0) 5 + PaVitis (5.0) = PaVioa (s,0)
> — (e — 1)V insilz,, 1605, ) a1+ Ble(s a)la-y, +PuViia(s,0) = Palinia (s, a)

=P Vi (s,a) — Ph‘vfk,hﬂ(& a)
=0,

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds by the assumption that
Wy, € Ck n under Wy, p,, the third inequality holds since the induction assumption Vi n41(-) < V;* ,(-) under N 41

and Py, is a valid distribution. Therefore, we have Qk,h(&a) < Qjf(s,a), for all (s,a) € S x A. Since Vk,h(-) =
max { maxged Q- a), 0}, for any s € S, we have the following two cases:

o If maxges Qr.n(s,a) <0, we have 0 = Vj, 1 (s) < ViE(s).

e Otherwise, Xv/k’h(s) = maXgeA @k’h(s, a) < maxqeeq QF (s,a) = Vi*(s).

Therefore, we have Vi, 1 (+) < V() under Uy, for any (k, h) € [K] x [H].
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(b): Optimism: We first prove the optimism for some fixed episode k € [K] by induction.

For any k € [K], the statement holds for h = H + 1 since ‘A/k a+1(-) = Vi1 (-) = 0. Assume the statement holds for

h + 1, which means Vk7h+1(«) = V¥ 1 (-) under @k7h+1 for any k € [K]. For any k € [K] and any (s,a) € S x A and, we
have

Th(c ) + <ﬁk,h‘7k7h+l7 () + ﬁHﬁb( A o Q5 (s, a)
=ri(s,a) + i Vs, #(s, ) + Blo(s, a)|z Ay~ (s, a) + PRV (s,0)]
=i Vst @(5,0)) — (Vi et (s, a)) + BW(& a)|a; + Py Vins1(s,a) = PuVii (s, a)
>~ | = ) Viensila,, 1905, 0z 1+ Blebls )|z +PuVinea(s,a) = PaVidys (s, )
>PyVint1(s, a) — PrVii (s, a)

=0,

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds by the assumption that
ty, € Cp, under Wy, 1, the third inequality holds by the induction assumption Vi p41(-) =V} (+) under Wy, 541 and PPy, is
a valid distribution. Then we have

Qi(5,a) < min min {4 (s, ) + @iy, Viner, $(s,0)) + Blb(s, )51 B} < Qun(s.a)

1<i<k

forall (s,a) € S x A, which further implies ‘Afkh( ) = max,ea Qk h = MaXeed QF(s,a) forany s € S.

Therefore, we have ‘A/kh() > V*(-) under \’I}k,h for any (k, h) € [K] x [H]. O

D.2. Suboptimality Gap

In this subsection, we establish Lemma D.4 and Lemma D.5 that bound the distance of the optimistic value function f/k, h

to the value function V" * associated with policy 7 and the pessimistic value function KV/& hn» respectively. Before that, we
present two high probability events =; and =5 in Lemma D.2 and D.3, respectively.

Lemma D.2. In Algorithm 1, for any 6 € (0, 1), with probability at least 1 — §, simultaneously for all b’ € [H], we have

K H

. ~ . H
3% 3 [T~ VE DI o) — s —Vilalshion)| < 281 27 o (5)
k=1h=h

Proof. Denote Ay, j, = [Ph(‘/}k7h+1 — Vf:l)](sfl, ay) — [Vk hal — V}fjl](sﬁﬂ). Since slfLH is Fj nh+1-measurable, Ay j,
is Fx, ny1-measurable and E[Ay 5 | Fin] = 0. Thus, for some b’ € [H], {Ag n, Ak, nrg1s -, Ak, H Fke[x] 19 @ martingale
difference sequence. Since |Ay n| < 2H by —H < ‘A/k,h+1(~) — Vh”fl() < H, we can apply Azuma-Hoeffding inequality
(Lemma F.1) to this martingale difference sequence and obtain

K H
DD Apn < 2HN2K(H — I + 1)) log(1/6) < 2H~/2T log(1/9), (32)

k=1h=h'
for some h’ € [ H| with probability at least 1 — §. Taking a union bound over all b’ € [H] gives the final conclusion.  [J

Lemma D.3. In Algorithm 1, for any § € (0, 1), with probability at least 1 — 0, simultaneously for all h' € [H], we have

K H

~ - ~ ~ H
30 35 [PPines = Funen)oh o) = inr = Frnellsh)] < 200y 2710 (5 )
k=1 h=h'

Proof. The proof is almost the same as that of Lemma D.2, except for replacing V,gf; +1(-) by ‘7]‘;’}7]4,1 (). O
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Lemma D.4. In Algorithm 1, under \fll N =21, we have

K A~ k k., ~ X K
A7 v <4 62, 4| H -2d1 1+ —
2, Vhalo) = Vi (s8) <43y 3 3} 0 Og( +de>

1 | H

D> 62,4/ H - 2dlog <1 + ij;)

~

K H

k
Z Z Ph Vk h+1 — V}fﬂ)]@iﬂﬁ) <4BH
k=1h=1

3H3d 1 9 H

Proof. By Algorithm 1, for any k € [K], h € [H], we have

~

Q1 (s,@) <ri(s,a) + (g1 Vikg 2 85, 0)) + Blbls, )2
=r1(5,0) + Bro 1 Vo (s, 0) + Bl (s, a) 5 (35)
QTk (s,a) =ri(s,a) + PlVgﬁk(s,a).
Then,
Vi (s%) = Vi (%) = Qo (55, ab) — QT (s, af)
< 1(slf,a1)+Pk071Vko, (S’f,a1)+f3\|¢(817a1)llA 1 *7'1(5]167‘11) Py Vo (sl,alf)
:B\|<z5(817al)||;\;01 + [Bro,1 Vi 2(5%, aF) = P1 Vi 0 (81,a1)] [Py (Vo — V&7 )(s}, ab)
—Blest,ab)lacs | + (g — ) Vi, @5t ab)) + [Pr(Thz = V3 )](s% ab)
<Ble(st,ab)lac  + 1@, — m)Viala,, J605ah)la0  + Pu(Tia = VF)I(s%, ab)
<23H¢(S’faa’f)|\,§;1 + [Py (Vi — V&7 )1(sE, af)
<43H¢(Slf»a’f)|\x; + [Py (Vio = VE)](st, o)

:43H¢(8’faa’f)|\,§;}1+[Vk,2—V2’T (s5) + [P (Vi = Vi )I(sh, ab) — Voo = V57 1(sh)

(36)

H
P ~ k
Z 45H¢(3hvah AL Z [ P ( Vi, 1 Vhﬁl)](siaaﬁ) = [Vant1 — Vhﬂ+1](5§+1)]
h=1 =1

where the first inequality is due to Eq. (35), the first equality holds since V;.c 9 = Vko 2 in Algorlthm 1, the second inequality

holds by the Cauchy-Schwarz inequality, third inequality holds since p; € Cko 1 under \Ill, the fourth inequality holds
due to Lemma F.7 with the updating rule in Line 8 of Algorithm 1, and the last inequality holds since we can expand
Vi he1(sF) — Vi h+1(sF) in a recursive way until stage H.

Summing up Eq.(36) for k € [ K] gives

Vi (sh)

WMN i M

H K H
Z Ble(shabliacs + D5 5 [[Pa(Vhnsr = Vi)l (shs ah) = [Whensa = Vi (sh )|
h=1 ' k=1h=1
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/ H
sh,ag)nﬁﬂ +2H [2T log (5>,
k=1h=1 ’

AK H
<iy S

I

where the second inequality holds under Z; by Lemma D.2. Subsequently, we try to bound I. For fixed h € [H],
denote ) = 0, (s, af) in Lemma D.7. Then, there are at most 3dlog[1 + d/(AH log(2))]/log(2) episodes that

16, 5, p(sk, ak) HA—l > 1, which further implies that there are at most H - 3d log[1 + d/(AH log(2))]/log(2) episodes that
’ k,h

there exists A’ € [ H| such that Hak Ld(sh, aﬁ/)H;\;l 1. Moreover, we can bound V. 1 (s%) — V/© * (%) in these episodes

by H since IA/k,l(-) — Vf’ (-) < H for any k € [K]. Thus, we have

Z v (sh)

i& hmm{Ha (st )| . 1}+H H- 3d log 1+¥ +2H\ 2T log il
koh PRy ThIAL, log(2) AH log(2) 5
K H K H
3H2d 1 H
~Q . ~—1 2
D Y6ty X D min {16 ek a3, 1+ o on (14 s ) + 2y 2rios ()
\k 1h=1 k=1h=1 log(2) AH log(2) 5
K H
- K 3H2d L2 H
<4 62 4 [H-2dlog (1 + —~ log (14 ———— ) +2H,[2Tlog [ =
\ Z"\/ 1 (14 575 ) + iy 98 (1 Sy ) + 2012700 ()

where the second inequality holds by Cauchy-Schwarz inequality, and the last inequality hols by Lemma F.5 with the fact
that H&;}L (s¥,a¥)|2 < 1/v/H. Thus, Eq. (33) is obtained. Besides, by similar argument in Eq. (36), we obtain

(37)

H H

~ k k ~ k

Vi (sh) = Vit (sk) < Y} aBlesh,al)lazy + 5 [Pa(Thnsn = Vi)l (shsah) = Phonsn = Vi (sh )]
h=h' h=h'

which further gives

K
~ k
D Ve (sh) = Vi (sh)

k=1
K H K H R i . R -
Z Z |¢ Shaah ||f\;1h + 2 [[Ph(Vk,hH = VeI (snyap) = [Viher — Vhﬂ+1](5h+1)]
k=1h=h " k=lh=w
K H K H R X R . (38)
<48 3 3 Gealdihleh bz, + 2 [P (P = VDI ak) = Vensn = Vit 1(she) |
k=1h=1 " k=1h=N

N
=~
@)

K H 2
K 3H=d 1 H
G2 H -2d1 14+ —— —1 1+ ——— 2H 4 12T —
th"\/ d"g( *de) " log(2) °g( +Mogm) T °g<6)’

where the last inequality holds by similar argument of bounding [ in Eq. (37) and Lemma D.2 under = .

Also note that

[P (Vi1 — Vi )] (55, ab)

M=
M=

=
Il
—
>
Il
—

K H
> 7Tk > 7Tk
Vensr = Vi (shan) + 3 O [(Pa(Pionsn = Vikol(shsab) = Wensn = Vit 1(sh) |
k=1h=1

[
D=
M=

>~
Il
—
>
Il
¥
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1 + L + ﬂ?)d lo 1 + ;
Hax) " log(2) °® Mog(2)

3H3d 1 H
H-2dlog (1 + —— log {14+ ——— 4H?, |2T log | =
\/ Og( *de) og(2) Og( +Mogm))+ Og(é)’

where the first inequality holds by sum up Eq. (38) for i’ = 2, ..., H and Lemma D.2 under =;. Thus, Eq. (34) is also

obtained.

Lemma D.5 (Gap between Optimism and Pessimism). In Algorithm I, under @1 N \fll N Zo, we have

K H
> Z Ph(Vint1 — Vi) (sh, af) <2(28 + B)H
k=1h=1 k=1h=

Proof. By Algorithm 1, for any k € [K], h € [H], we have

~

iy Vg ot B(5.0)) + Blb(s.0) 50

~

Qk,h(& a) =2rp(s,a) + <ﬁk,hvk,h+17 ¢(87G)> - 5H¢(37a) H,&;lh

(s, )
=11(5,) + Bro 1 Vig a1 (s,0) + Blb(s, a) 5

(s, )

(s,a) + @k,h‘?k,h-&-l(sv a) — 5”@5(87 a) HA;}}L,

Then,

Vin(s8) = Vin(s8) < Qrn(sk,af) — Qun(sh,al)

<rn(shyaf) + B Dy e (o8 ) + Blb(sh a)Iar = [rn(shoaf) + B Vi (o5 af) = Blo(sh ab) Iz

:ﬂH¢(Sﬁaaﬁ)HA*1 +ﬁ\|¢(8fmaﬁ)\|j\4 + [Pro.n Vio, 1 (85, ai) = P Vieg ns1 (55, afy)]

+ [PuViens1 (55, af) — BronVinsa (s5, )]+ [Pr(Viensr — Viens1)] (s, ak)

:ﬂHd’(Sh’ ah)H;\;[)l,h, + 5“@5(3}17%)”[\;2 + <(Nk0,h+1 - Nh)‘/}kmh-klv ¢(327alﬁ)>

+ {Bignrr = ) Vinst, &(sE, af)) + [Pr(Vensr — Vinn)1(sE, af)

<Blo(s}, ai)laz, + 5H¢(8'ﬁ,a’;§)\l,§;}h + 1By — 1) Vionsila,, lb(shan)laze,
+ (B = 1) Vil , 100k, ai)lazs + (B (Vihs1 = Vis1)1(shs af)

<28 ¢(sf, GZ)HA;O{}L + 28] (s, aﬁ)H[\;}h + [Ph(Vins1 = Vins1)(sh, af)

<aBl(sh af)a-s +281(sk af)lar + [Ba(Vinor — Vins)]l(s. af)

K H K
>y 62, H-2dlog<1+Hd/\>+4H2 2Tlog(
1

O

7)

(39)

—1]
k,h

=(48 + 25)H¢(327a§)”/§;1h + [‘2’c,h+1 - ‘v/k,h+1](3]ﬁ+1) + [Ph(‘/}k,hﬁ-l - Vk,hﬂ)](slﬁ’ alﬁ) - [‘7k,h+1 - ‘7k,}L+1](SZ+1)

(40)

where the first mequahty holds since V, hi1(sh) = Qk n(s¥,ak), the second inequality holds due to Eq. (39), the first
equality holds since Vk7 h = Vko, n, the third inequality holds by the Cauchy-Schwarz inequality, the fourth inequality holds
since p, € Cy,p, N Ci,p, under ¥y N Wy, and the last inequality holds due to Lemma F.7 with the updating rule in Line 8 of

Algorithm 1.
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Since ‘A/hh/(s’fb,) - Iv/hh/(s],j,) < H, we further obtains
V() = Vi (s$) < min { Qi (sh, af) = Gun(sh, af), H |
<min { (45 + 29) @(s}, bz H | + [P (Vi — Vk,hm](sz, af)
<(4B + 2B)5x p min {Hak h®(shan)la- } + [Ph(f/k,h-kl — Vien1)|(sh af) @1
=(45 + 25)5y,, min {Ha,;;(p(s’,i, ai)lazs 1} + Vi1 = Vi) (sh41)
+ [Ph(‘/}k,h-ﬁ-l — ‘V/k,h+1)](sﬁ7 aﬁ) - [ﬁk,hﬂ - ‘V/k,h+1](55+1)a

where the second inequality holds since Bak,h > \Hd2VH > H. Summing up Eq. (41) for k€ [K]and h = ', ..., H
gives

e (55) = Vi (sf))

1=
)

4
I

(48 + 28)1, min { |7 d(sk, af) 51 1]

N
M=
M=

b
Il
-
>
Il

h'

Y PA(Vionsr = Vi )55, aF) = Vi1 = Veonral(shy0)
h=h'

31985 P Y H (42)
(48 + 26)0,, min {Hakjhd)(sh, ah)HK;}h, 1} + 2H, | 2T log (5>
R o K H K H H
<(F+28)y Y D162 X min{lochotsh a2, 1f + 261y 27 10g (%)
\ k=1h=1 k=1h=1
<(45 + 2) i iA? H-2dlog (1+ 2 + 28, [2T10g (£
= \ &= S\ Hax 5\s

where the second inequality holds by Lemma D.3 under =, the third inequality holds due to Cauchy-Schwarz inequality,
and the last inequality hols due to Lemma F.5 with the fact that H% Lo(sk, ak)|la < 1/VH.

Jr
D=

Il
—

N
D=
M=

=
I
—_

Also note that

[P (Vi1 — Viens1)](s%, af)

M=
M=

b
Il
—
>
Il
—

|[Pu (Vs = Vi)l ab) = [Vensn = Vil (shi) |

Mm

K
[Vinsr = Vionar](sh 1) + >

I
"
Mm

k=1h=2 k=1h=1
'k B
~ o K H H
<(4B +20)H \ 3> 62,4/ H - 2dlog (1 + H— +2H2 2T log (5> + 2H, |2T log ( 5)
k=1h=1
Ao K& H
<2(28 + B)H\ Z Z 3,3,,1\/H - 2dlog (1 + m +4H?, | 2T log (5
k=1h=1
where the first inequality holds by sum up Eq. (42) for A’ = 2, ..., H and Lemma D.3 under =,. O]

D.3. Summation of Estimated Variances

In this subsection, we try to bound the summatlon of estimated variance in Lemma D.9. As shown in Lemma D.9, the
summation of estimated variance 35 el PN he1 O'k h= = O(HT), which utilizes the Law of Total Variance in (Lattimore &
Hutter, 2012), detailed in Lemma D.6.
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Lemma D.6 (Total variance lemma, Lemma C.5 in (Jin et al., 2018)). With probability at least 1 — 6§, we have

3 Z [Vth+1] (s, ak) < 3 (HT + Hlog(1/5)).
k=1 h=1

By the definition of &y, 5, the summation of % ,, will influence the summation of 57 ,. We need to make Z el Z hel gk h
small such that it will not become dominant term in the upper bound. However, enlarging Sk,n 18 required in some stages
of some episodes, as stated in Remark 7.4 in the main paper. To address this dilemma, we build the following critical
lemma which characterizes the conservatism of the elliptical potential, i.e., |x; Hzf_ll is small in most episodes, as detailed

in Lemma D.7.

Lemma D.7 (Elliptical Potentials: You cannot have many big intervals). Given A\ > 0 and sequence {wt}thl c R? with

|zelly < L forallt € [T), define Z, = A\ + 2221 x;x] fort > 1 and Zo = M. During [T), the number of times
[ellz-1 = cis at most
t—1

_ 3 1 1+ 7[/2
log(1 + ¢2) ©8 Alog(1+¢?) )’

where ¢ > 0 is a constant.

Proof. The proof of this lemma is firstly proposed at Exercise 19.3 in (Lattimore & Szepesvari, 2020) for the case of C = 1,
i.e., Lemma F.6, we generalize it to the case with any positive constant C'.

Let 7 be the set of rounds ¢ when ||a:t\|;71 =>Cforte[T]and Yy = Zo + 25:1 1{ie T}z;z;. Then
t—1

dx + [T1L2\* _ (trace (Yr)\*
d - d
2 det (YT)

= det (Zy) H (1 + ||$t‘|i'{f1)

teT

> det (Zo) H (1 + ||-’Bt\|;;11>

teT
> A1+ )7

Rearranging and taking the logarithm show that

d |T|L?
< ———5~ .
7l log(1 + ¢?) log (1 + d\ )

Abbreviate x = d/log(1 + ¢?) and y = L?/d), which are both positive. Then

zlog(1 + y(3zlog(1 + zy))) < wlog (1 + 32°y?) < wlog(l + zy)® = 3z log(1 + zy).

Define f(z) = z — xlog(1 + yz) for z = 0, we have f'(z) = [1 + y(z — z)]/(1 + yz), which implies f(z) is increasing if
1 — a2y = 0, or f(2) is first decreasing then increasing, otherwise. Since f(0) = 0 and f(3zlog(1l + 2y)) > 0, if f(2) <0
we must have z < 3z log(1 + zy). In other words, f(z) is increasing for z > 3z log(1 + zy). It then follows that

|T] < 3zlog(l+x )—Llo 1—&-1/72
h & 4 ~ log(1 + ¢2) & Alog(l+¢2) /)’

The following Lemma is required to upper bounds the summation of offset term Uy, j,.
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Lemma D.8. In Algorithm 1, under Y, for any k € [K| and any h € [H], we have

B, (Vihe1 = Vinet)s ¢(Slﬁ7a’z§)>‘ < B H(P(SIZ,GIZ)HA;; + Pr(Vieher — Viens1)(si, ai) + B H¢(5ﬁ7alﬁ)wggl}l

Proof.
(Hig, W (Vi = Vi), d(sE, al) >‘ = ‘@k nVine1(sh ah) = PeaViena (55, a’,j)’
< |PinVinsi(sh, af) = PuVinsa (sf, af) ‘ )thk nea(of ah) — PaVinsa (o1, aﬁ)’
+ P, Vi ha1(sh ak) — IP’k WV (st af)‘
= [KCkn = BV ks @55 b)) + PV = Vi) (s ah)| + [Coan = ) Vi, (s, k)|
= (1n = By )V ks, 6(s5, flﬁ»’ + P (Vins1 — Vins1)(shoaf) + )<(Hh — fig, 1)V ks 1 ¢(82»a2)>‘
< |(mp — ﬁ'k,h)‘/}k,h-&-l Aen H‘ﬁ(slﬁaai)"ﬁgyﬁl + Pu(Viner = Vionsn) (s, ah)

H Hk h) Vk Jht1 Ao \\cﬁ(s;i,a’;i)\\g; ’

1
h
<B| sk, ah)foglh + Ph(‘?k,hﬂ — Viens1) (s, af) + Bqu(SZ, GZ)H;\;L ;

where the first inequality holds due to triangle inequality, the second equality holds since 17k nt1(c) = >V, n+1(+) under T by
Lemma D.1, the second inequality holds due to Cauchy-Schwarz inequality, and the last inequality holds since under T we
haveuheckhmckh O]

Now we are ready to upper bounds Zszl Zthl 5’27 , in Lemma D.9 under the high probability event T n Zo N .

Lemma D.9. In Algorithm 1, under event Y n Z5 N Z3, we have

K H 5
6 H"d° d 1
62, <8HT + ——— 1 1+ ——— H31 -
Z 2 Tkn SBHT + log(1 + ¢?) ©8 < MDY log(1 + ¢2) 6" log )

k=1h=1
HY  12H% 1
3 3 H 433
+ 8H?(6 + Hd®)y 2T log < 5) * 1o ® log (1 + Mog(2)> + 2H* 4>V 2+
~ _ A2 K
SHd [H (2H(6+ Hd*)B + (4 + HA*)B + (H + 1)(4+ Hd*)B) + 5| log (1 + M)

where ¢ = 1/(H3d®).

Proof. Initially, by definition of 5}, j, in Algorithm 1, we have

K H K H K K H R R
PN ARSI IHED NI (NI [[Vk,th,hH](SZ,aZ) + Uk,h}
k=1h=1 k=1h=1 k=1h=1 k=1h=1

I Is I3

H

(43)

Bounding 7;: Denote ¢ = 1/(H?3d). For fixed h € [H], set z, as &; ; ¢(sF, a¥) in Lemma D.7. Then, there are at most

3dlog[l + d/(AH log(1 + ¢*))]/log(1 + ¢?) episodes that |5, ; (s, af)| z-1 > c such that g, = H?/d5. Thus, we
’ k,h

obtain

K H
n<> YH+H H'

d d
— = __log (1 + ) . (44)
== log(1 + ¢2) AH log(1 + ¢?)
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Bounding />: Since pu,, € C_k,h N Cvk,h under Y, we have

i nViene1 (5, a1)) = Pron Vi (si, af) <PuVinsa(si, ai) + B (s, ai’)”g—l
. (45)
<H1c,hvk,h+1> ¢(Sh7 ah)> ]Pk th h+1(327 ah) >]Pth h+1(5h7 ah 5 ||¢ Sm ah ”

Combing Eq. (45) and the definition of E 5, in Eq. (30) gives

233

S
N
T
S

||Mm

K
[Ph(Vins1 — V1)) (sF, af) + H?d® Z {2(5 +5) |p(s), aﬁ)”,&;lh »H} + HAd*V\

M=
M=

ke
Il
-
>
Il
—

K H
[P (Vishr1 = Vine1)] (s, ar) + 2(8 + B)H?d® Z D, G,nmin {%}ﬁ(sﬁ,aﬁ) At ’1}
k=1h=1 k,h

N
T
%

D=

M=

k=1h=1
+ H*d*V\
(46)
where the second inequality holds since Bﬁk’h >+/Hd>v/H > H.
Bounding /5: I3 can be bounded by
K H K H K H
Z VthJrl (Shvah) [Vth+1] Shvah +2 Z Z Uk,n + Z Z [thh+1] Shvalﬁ)
k=1h=1 k=1h=1 k=1h=1
}: J2 JB
K H
+ ) [[Vk,hvk,h-H] (shan) = [VaVita] (shyafy) — Uk,h]
k=1k=1
Jy
Bounding J;
S * 2k k £ ook kN2 ™2 kK N
Ji = Z Z [Pth+1 (sh»ap) — [Pth+1(3h7ah)] ] - [PthH (sh,ap) — [PthH(Shaah)] ]
k=1h=1
K H
< Z 2 Ph Vi1 (Slﬁaah) Pth+1 (Shaalﬁ)
k=1h=1 47

7!‘k
[P}L(Vh*+1 - Vh+1)] (si, GZ)

N
T

D=

M=

b
Il
—
>
Il
—

[Pr(Vinsr — Vi )] (sk, k),

N
s

D=

M=

T
i
ﬁ‘
J

where the first inequality holds since V;*, ; (-) = VT f 1» the second inequality holds since Vh”f 1 < VF¥.,(-) < H, and the last
inequality holds since ‘Afk7h+1 (*) = V¥, 1(-) under Y by Lemma D.1I.

Bounding J, By the definition of Uy, 3, in Eq. (29) and Lemma D.8, we have
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K H K H
Ja< Y > 128 Hd)(s’fb,a’,ﬁ)HA;l}l ,2H2} +4H )’ Z Pp(Viehar — Vins1)] (5, af)
, ==

K H
£33, min {8H(B + B) |(s. af)| 5, .20

k=1h=1
~ . K H K H R .
<2B+8HE+H] Y, Y] Fenmin {\a,c,w(sﬁ, ah). 1} 4l Y PVt — Vi)l sk af),
k=1h=1 Arn k=1h=1
(48)
where the second inequality holds since B&k’h >VH3 - +/H > H? 8H(B + E)&k,h >8H+VH -vH > 2H?2.
Bounding J; Since Z3 holds, we have
1
J3 <3 [HT + H3log <5)] (49)
Bounding J;, Due to Lemma 7.5, we have
J1 <0 (50
Putting Together Initially, we have
K H
B min { |57 b(sh, af) 511
k=1h=h' ’
K H K H
<y 0 X 0| 2 X min{ I eteh Iz, 1) 651
\ k=1h=1 k=1h=1 o
K H K
< o2 H -2d] 1+ —
V& St -2t (1+575)

where the first inequality holds due to Cauchy-Schwarz inequality, and the second inequality holds due to Lemma F.5 with
the fact that |5, @(sf:, af) |2 < 1/VH.

Subsequently, combining Eq. (46), (47), (48) gives

I+ Ji+ Jo

K H K H
<2H Y M [Pu(Vions1 — Vi)I(sh,al) + H(4 + Hd®) DY Ph(Visr = Vionr1)](sh, af) + H*d*VA

k=1h=1 k=1h=1
+2[ (4+Hd35+(4+Hd3)6)+3]
K H
<2H 2 [Pr( Vk htl — Vh+1)](827a2> + H(
k=1 h=1

+2 [H ((4 + Hd3 + (4+ Hd3)ﬂ) B]

H H
<4H3(6 + Hd®)4 |2T log (§> + 160g(2) log
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1+£
HdA

where the second inequality holds due to Eq. 51, and the third inequality holds by Lemma D.4 under Y n =; and Lemma D.5
under Y N =,. Further considering Eq. (44), (49), (50) gives

K
k=1h

<4HT +

2 [H (2H(6 CHP)E+ (4 + HEVG + (H + 1)(4 + HdS)B) + B]

T

~2
Ok.h
1

3H°d° d 1
—1 1+ ————< H31 -
log(1 + ¢?) o8 ( * AH log(1 + c2)> +3H log (5)

H 6H4d 1
4H3 Hd*), [2T1 = — _log|1
+ (6 + ) 0g(6>+log(2) og( +

2 [H <2H(6 +HP)B+ (4+Hd)B+ (H+1)4+ Hd3)5>

K

(52)

Besides, for any z,a,b > 0, if < ay/z + b, then we have \/z < /b + a2/4 + y/a2/4 < 1/2(b + a2/4 + a2/4), i.e.,
x < 2b + a®. Thus, Eq. (52) implies the final conclusion. O
D.4. Proof of Theorem 6.1

Putting these building blocks together, we are finally ready to give high probability upper bound on the regret in this
subsection, which is based on high probability event T n Z; N 25 N Es.

Proof of Theorem 6.1. By construction, taking a union bound, we have that with probability 1 — 105, T n 21 n 23 N =3
holds. In the remainder of the proof, assume that we are conditioning on this event. Initially, we have

K 3H?2d 1 H
BN (1 ) yoH, [2Tlog (2
Hd)\) " o8 2) Og( * )\Hlog(Q)) - o8 ( 5 )

(53)

where the first inequality holds since ‘A/m (1) = Vi*(-) under T by Lemma D.1, and the second inequality holds due to
Lemma D.4.

Then, by Lemma D.9, we have

K
6H5dS d 1
62, <8HT + ———log (1 + ———— H3log ( =
kz:ll hzlak’h SHT + log(1 + ¢2) ©8 < * AH log(1 + ¢?) 6% log )
, ( H\ 12H% 1 ,
H3 Hd*)\[2Tlog | = | + ———1log (1 + ——— | + 2H*a@*V\
+8H”(6 + ) 0g<6)+ og(2) og< +)\log(2)>+ VA+
3\ A 3\ 2 3\ 3 %1 K
8Hd [H <2H(6 +HA)F + (4 + Hd®)F + (H +1)(4 + Hd )5) + 5] log (1 + m)

under ¥ N Z; N Zy, where ¢ = 1/(H3d®).
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On the one hand, since 1/log(1 + 1/z) < 2z for any = > 1, we have

1 1
5y S 1
log(1+¢%) ~ log (1 + zoqm)

< 2HSqY

for H9d'0 > 1. One the other hand, setting A = 1/(H?+/d) gives B = O(Vdlog(T)), B = O(H«d3log(T)), g =
O(H?Vd31og(T)) and 3 = O(H/d31og(T)), where T = K H.

Thus, by some basic manipulations, we obtain

M 262, <0 (HT + HY @' 4 HAdP\/Tlog(T) + Hd™ 1og3(T))

k=1h=1 54)
<O (HT + HYd'® + Hd"log(T) + H*d"" log™(T"))

<O (HT + H"d* + H%d" log*(T'))

where the second inequality holds since H*d®+/T log(T) < [HT + H"d%1og(T)]/2, and the third inequality holds since
H7d*1log(T) < H%d"°log®(T). Substituting Eq. (54) in (53) gives

Regret(K)

3H?d HVd / H
<0 (x/Elog(T)\/HT + H11d16 + H9d0 log®(T)+/Hdlog(T) + g (@) log (1 + log(2)> +2H, 2T log (5))

<0 <Hd\/m + H%%/@ + H°d° logQ(T))

-0 (Hdﬁ + H6d9> ,

where the second inequality holds by dropping lower order terms and the fact that v/a + b + ¢ < \/a + Vb + 4/c for any
a,b,c> 0. O

E. Lower Bound

Remark 23 in Appendix of (Zhou et al., 2021) constructs a hard-to-learn linear MDP instance, which shares the same order
of regret lower bound as a hard-to-learn linear mixture MDP instance. According to Theorem 8 in (Zhou et al., 2021), the
linear mixture MDP has a regret lower bound of Q(H d+/T), which means the linear MDP with known reward has the same
regret lower bound as well. We present the construction of this hard-to-learn linear MDP from (Zhou et al., 2021) in this
section for completeness. This hard-to-learn linear MDP can be regarded as an extension of hard instances in linear bandits
literature (Dani et al., 2008; Lattimore & Szepesvari, 2020). We first illustrate the structure of this MDP and then present the
specific linear parametrization.

Hard MDP Instance This MDP instance is denoted as M = {S, A, H,{P1}5, {rn}n}. The state space S consists of
states s1,...Sg42 such that |S| = H + 2. There are 297! actions and A = {—1,1}%~! such that each action a € A is
denoted in vector from.

» Reward: For any stage h € [H + 2], only transitions originating at sg o incurs a reward.

e Transition: sy and sy 4o are absorbing regardless of what action is taken. For state s; with ¢ < H, the transition
probability is given as

L+ </1’ha a>a s = SH+2
Ph(5/|si7 CL) =41- (L + <p’h7 a>)7 s’ = Si+1
0, Otherwise

where © = 1/H and p;, € {—A, A}~ with A = 1/1t/K/(4+/2) to make the probabilities are well-defined. The
transition of this MDP is detailed in Figure 1.
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1-6-— (#h!al)

S+ i . E S+
(1, a1)“, :' (42, a1)

6+

Figure 1. The transition matrix P;, of the hard-to-learn MDP.

Linear Parametrization Then, we specify the linear parametrization of this MDP. For each h € [H], the transition
probability matrix P, and the reward function rj, are defined as Py, (s’ | s,a) = {(¢p(s,a),u; (s')) and ry(s,a) =
(¢p(s,a),0),), where ¢(s,a) € R4 is the known feature mapping, g, = (un(51), ..., pin(sH12)) € REFD*H+2) and
0, € R+ are unknown parameters in linear MDPs. Here, ¢(s, a), u;,, 0}, are specified as:

[(a.8aT,0)", s=sphe[H+1]
o(s,a) = {(O,OT, 1)T = s
((1 - L)/a7 _N;/ﬁao)-r ’ s’ = SH+1
Ky (S/) = L/a7lj’;:/5al)-ra S/=SH+2

0, otherwise

0,=(0",1)"

)

where o = /1/(1 + A(d — 1)), B = 4/A/(1 + A(d — 1)).
Norm Assumption We check the norm assumption of linear MDPs in the following:

1. For s = s, where h € [H + 1],
for any (s,a) € S x A.

$(s,a)]2 = /a? + (d— 1)F% = 1 and |$(ss+2, )2 = 1. Thus,

#(s,a)l2 <1

2. Forany v = (vq,...,vr4+2) € RZ+2 such that |v < 1, we have

v(l—10)  wvl? 1 IO/ K ’
— 2
|uhv|§=[a+a] +v§,+2<?+1=[1+A(d—1)] +1=l1+ ™) (dl)] +1<d+1,

where the last inequality holds by assuming episode number K > (d — 1)/(32H (+/d — 1)). Thus,
for any h € [H].

vl < Vd+1

3. In addition, |0 ]2 <1 < +/d+ 1forany h € [H].

Lower Bound The constructed linear MDP above has the same state space S, action space A, episode length H, reward
function {rp, }pe[r) and transition probability {IPp, } e[ as the constructed hard-to-learn linear mixture MDP in Appendix

E. of (Zhou et al., 2021), which shares the same regret lower bound Q(H d\/T) as shown in Theorem 8 in (Zhou et al.,
2021) and is formalized in the following theorem.
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Lemma E.1 (Lower bound of linear MDPs). Let d > 1 and suppose K > max {(d — 1)?H /2, (d — 1)/(32H(d — 1))},
d =4, H = 3. Then for any algorithm there exists an episodic linear MDP parameterized by { i), }ne[ ), {On }ne ) and
satisfy the norm assumption given in Definition 3.1, such that the expected regret is lower bounded as follows:

E[Regret(K)] = Q(HVT),
where T' = K H and the expectation is taken over the probability distribution generated by the interconnection of the

algorithm and the MDP.

Proof. The proof is the same as that of Theorem 8 in (Zhou et al., 2021), except for changing B to /d to satisfy the norm
assumption of linear MDPs. [

F. Auxiliary Lemmas
In this section, we give some auxiliary lemmas which serve as the preliminary for the proof above. We also include some
other lemmas that are unnecessary for our theoretical analysis but can help readers be more familiar with related works. In
general, these lemmas are categorized into four subsections:

* Appendix F.1 for some concentration inequalities;

» Appendix E.2 for properties related to elliptical potentials;

* Appendix F.3 presents some useful properties for linear MDPs;

» Appendix F.4 builds the covering number for covering net over some function classes of our interests.

F.1. Concentration Inequality

In this subsection, Lemma F.1 presents the Azuma-Hoeffding inequality, Lemma F.2 presents the Freedman’s inequality
in (Freedman, 1975), Lemma F.3 a Hoeffding-type self-normalized bound, and Lemma F.4 presents the full version of
Theorem 7.1 in main paper.

Lemma F.1 (Azuma-Hoeffding Inequality). Let {z;}}'_, be a martingale difference sequence with respect to a filtration

{G; ?:11 such that |x;| < M almost surely. That is, x; is G;1-measurable and E [x; | G;] = 0 a.s. Then forany 0 < 6 < 1,

with probability at least 1 — 6,
D @i < M+/2nlog(1/6)
i=1

Lemma F.2 (Freedman’s Inequality, (Freedman, 1975)). Let {x;, F;} be a martingale difference sequence with Vi > 1,
E(xi | Fic1) = 0, E(a? | Fimq) = 02, V2 = 23‘21 3. Furthermore, assume that P (|z;| < ¢ | F;—1) = 1 for any
0<c<oo.

Then, for fixedt = 1 and any § > 0, with probability at least 1 — §, we have:

t
2 d; < A/2V21og(1/5) + %clog(l/é).
i=1

Lemma F.3 (Hoeffding inequality for vector-valued martingales, Theorem 1 in (Abbasi-Yadkori et al., 2011)). Let {Qt}?il
be a filtration, {x¢,n:} ¢>1 be a stochastic process so that z € R? is G;-measurable and 1t € Ris Gy 1-measurable.

Denote Z, = \I + Z§=1 x;x] fort = 1and Zy = \L If |z¢|2 < L, and n; satisfies
Elm[G] =0, |ml<R
forallt = 1. Then, for any 0 < 0 < 1, with probability at least 1 — § we have:

t
Z Tl

i=1

vt >0, < Ry/dlog (1 + tL2/d\) + log(1/6).

z;?
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Lemma F.4 (Bernstein inequality for vector-valued martingales, full version of Theorem 7.1). Let {Qt}zozl be a filtration,
{@s,ne} >1 be a stochastic process so that x; € R4 is G,-measurable and M € R is Gy 1-measurable.

If |@:|2 < L, and n, satisfies

E[n: | Gi] =0, E[U? | Gt <o’

N+ min {1, HIBtHZf_jl}‘ <R

forallt = 1. Then, for any 0 < 6 < 1, with probability at least 1 — § we have:

< 80v/dlog (1 + tL2/(dN)) log (4t2/8) + 4R log (4t/5)

t
Z L7

i=1

vt > 0,

z!
where Zy = NI + Z§=1 x;x] fort = 1and Zo = \L

F.2. Elliptical Potentials

In this subsection, we present Lemma FE.5 in (Abbasi-Yadkori et al., 2011), which is an important lemma for building
vO(V/T) worst-case regret for many algorithms for linear bandits or RL with linear function approximation. Then, we
present Lemma F.6, about elliptical potentials (Exercise 19.3 in (Lattimore & Szepesvari, 2020)), which states that one
cannot have more than O(d) big intervals. Lemma F.6 is further generalized in Lemma D.7 in Appendix D.3. In addition,
we also present Lemma F.7 (Lemma 12 in (Abbasi-Yadkori et al., 2011)) and Lemma F.8 (Lemma E.1. in (He et al., 2022))
about the “rare-switching” update strategy of the constructed value function.

Lemma E.5 (Lemma 11, (Abbasi-Yadkori et al., 2011)). Given A > 0 and sequence {a:t}thl < RY with ||z, < L for all
t € [T), define Zy = NL+ Y_, @] fort = 1and Zy = \L. We have

T 2
TL

» \min {1 2z }<2d1 1+=—).

=1 ln{ ’thHZt—ll Og( * d\ )

Lemma F.6 (Elliptical Potentials: You cannot have more than O(d) big intervals. Exercise 19.3 in (Lattimore & Szepesviri,
2020)). Given \ > 0 and sequence {azt}tT=1 < R with |x¢||, < L forall t € [T), define Zy = \I + ZZ:l x;x] fort =1
and Zy = A\L. The number of times H:):t|\2z—1 = 1 is at most

3d (s
log(2) ° Aog(2) )

Lemma F.7 (Lemma 12 in (Abbasi-Yadkori et al., 2011)). Suppose A,B € R*¢ are two positive definite matrices
satisfying that A > B, then for any € R, |z|a < ||x|B - 1/det A/ det A.

Lemma F.8 (Lemma E.1. in (He et al., 2022)). The number of episodes where the algorithm updates the value function in
Algorithm 1 is upper bounded by dH log(1 + K).

F.3. Linear MDP Property
This subsection gives some indirect results about the estimated parameter fi,, ;, in linear MDPs.

Lemma F.9. In Algorithm 1, for any k € [K| and any h € [H], we have:

k—1

~ ~_ ~_ : : - T

B p — by, = Ay | =y + ) 5,2 d(sh, ah e, (55)
=1
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Proof. We start from the closed-form solution of f& ko

k—1 k—1
~ ~ ~— : T ~_ ~ . . T
Hi,n :Ak,}z Uz,}3¢(5§wah)5 (5h+1> = Ak:,}z g;, 2¢(3h7ah) (Ph(' | SﬁzvaZ)T + € )
i=1 i=1
= .
=A;Z,Z az_,;? (8h»an) <¢(5hvah) Ky + €, )
i=1
= ~ _
:A;Z,Z ‘;z_;? (sha ah)¢(shv ah Uh + Ay Z 3@ h¢ Sha ah h
=1 i=1

k—1
=pp, — )‘Ak,}zl"’h + Ak,}L Z 9, ro(sh. al)eEl,
i=1
Rearranging terms gives Eq. (55). O

F.4. Covering Net

This subsection presents lemmas required for bounding the covering number of considered function classes, including
V V2 V.

Lemma F.10 (Covering Number of Euclidean Ball, Lemma D.5. in (Jin et al., 2020)). For any € > 0, the e-covering
number of the Euclidean ball in R? with radius R > 0 is upper bounded by (1 + 2R /<)%

Lemma F.11 (Lemma E.6. in (He et al., 2022)). Let J\A/'E be the e-covering of V with respect to the distance dist (V, V') =
sup, |V (z) — V'(x)|, where V is defined in Definition C.5. Then

log |N2| < dJ log(1 + 4L/¢) + d*J log [1 +8dY2B2/ ()\52)] .

Lemma F.12 (Lemma E.8. in (He et al., 2022)). Let /\Aff be the e-covering of V2 with respect to the distance dist (V, V') =
sup, |V (z) — V'(x)|, where V? is defined in Definition C.6. Then

log [N2| < dJ log(1 + 8LH/e) + d*J log [1 + 3242 B2H?/ (/\52)] .

Lemma F.13. Let N. be the c-covering of V with respect to the distance dist (V, V') = sup,, |V (z) — V'(z)],
defined in Definition C.7. Then

log | V2| < dlog(1 + 4L/s) + d*log [1 +8dY?2B?/ ()\62)] .

~

Proof. Denote A = 32A~1, then for any 17() eV,

V() = max {mawa(b(-,a) - ¢(~,a)TA¢(~,a),O} (56)

for |w| < L and |A] < < B2\7L. The proof is almost the same as that for Lemma F.11, since for any two functions
Vi, Vs € D, let them take the form in Eq. (56) with parameters (w1, A1) and (w2, A,), respectively. Since | min{z, 0} —



Nearly Minimax Optimal Reinforcement Learning with Linear Function Approximation

min{y, 0}| < |x — y| for any z, y € R and max, is a contraction mapping, we have

dist(ffl7 \72) < sup

s,a

|0l 605.0) = 0l.0) Ax(s.0)| = |w] 65,0 = /65,00 Azl |

s

< sup [wfcﬁ — ¢>TA2¢} - [w§¢ — ¢TA2¢H

Pl pll2<1 57)
< sup ‘(wl — wg)T (]5‘ + sup \/‘¢T (Ay — Ay) ¢‘

ol plla<1 Pl pla<1

= w1 — w2y +4/[A1 = Asfy < wi —wally +4/|A1 — Az p,
where the second last inequality follows from the fact that |/z — ,/y| < /2 — y holds for any x,y > 0. For matrices, | - ||2
and | - | p denote the matrix operator norm and Frobenius norm, respectively.

Let Cy be an e/2-cover of {weR?||w|, <L} with respect to the 2-norm, and Ca be an &2/4-cover of
{A e R¥™? | |A|p < d'>B?A~'} with respect to the Frobenius norm. By Lemma F.10, we have:

2

d
Cw| < (1 +4LJe), |Cal < [1 +8dY2B2/ ()\52)]

By Eq. (57), for any \71 € ]A), there exists wo € C,, and Ay € Ca such that ‘A/g parametrized by (ws, Ay) satisfies
dist(V1, V2) < e. Hence, it holds that || < |Cy| - |Cal, which gives

log |Nz| < log |Co| + log |Ca| < dlog(1 + 4L/e) + d* log [1 +8d'2B?/ ()\52)] .

This concludes the proof. O
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